BLOP: Batch-Level Order Preserving for GPU-Accelerated
Packet Processing

Zhilong Zheng, Jun Bi, Heng Yu, Chen Sun, Jianping Wu"
Tsinghua University

CCS CONCEPTS

« Networks — Middle boxes / network appliances; Network
performance analysis; Data path algorithms;

KEYWORDS
NFV, GPU, batch-level, order-preserving

ACM Reference format:

Zhilong Zheng, Jun Bi, Heng Yu, Chen Sun, Jianping Wu. 2017. BLOP:
Batch-Level Order Preserving for GPU-Accelerated Packet Processing. In
Proceedings of SIGCOMM Posters and Demos 17, Los Angeles, CA, USA, August
22-24, 2017, 2 pages.

https://doi.org/10.1145/3123878.3132013

1 INTRODUCTION

Recent advances in networks such as Network Function Virtu-
alization (NFV) have driven the emergence of high-performance
packet processing on commodity hardware. The nature of packet
data naturally lends itself to parallel processing, and recent work
has demonstrated that GPUs, which have thousands of cores, are
well-suited to a number of packet-processing tasks [3].

A typical workflow of GPU-accelerated packet processing in-
cludes the following major steps [1]. (1) Multiple worker threads in
multi-core CPUs keep fetching packets from NICs (based on DPDK)
and storing them in host memory. (2) Anytime when a worker
thread collects a batch of packets, it feeds them into the on-board
memory on GPU and invokes a block of cores (threads) to process
the packets in parallel. (3) After processing an entire batch, the core
block in GPU informs the related worker thread in CPU to copy
the batch back to host memory and send it out. GPU parallelism
could deliver high throughput with relatively low cost [3].

However, the high performance brought by GPU parallelism
comes with significant challenges. Especially, parallel processing
could cause serious packet order violations, incur massive retrans-
mission, and compromise end-to-end TCP throughput. The root
cause is the double-edged sword of GPU parallelism. Multiple
core blocks in GPU processes their batch of packets individually

*Zhilong Zheng, Jun Bi, Heng Yu, Chen Sun and Jianping Wu are with Institute for
Network Sciences and Cyberspace, Tsinghua University, Department of Computer
Science, Tsinghua University, and Tsinghua National Laboratory for Information
Science and Technology (TNList). This work is supported by National Key R&D
Program of China (2017YFB0801701) and the National Science Foundation of China
(N0.61472213). Jun Bi is the corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGCOMM Posters and Demos 17, August 22-24, 2017, Los Angeles, CA, USA

© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5057-0/17/08.

https://doi.org/10.1145/3123878.3132013

136

header

Worker Thread #/ payload

Batch - Tag |. metadata_|
Collection Batch Tagging ~ b barchid
Batch Batch

(| Transmittin

Reordering
5

«
Batch Buffer

‘ Worker Thread #n ‘

g

Packet Structure
Thread #/

‘ Thread #n ‘

2ddd [P

Hod 49D 001/0%/01

CPU GPU

NIC

Figure 1: BLOP design overview

and simultaneously. Due to different code complexity including
branching, iteration, etc. in different core blocks, a latter packet
batch could be processed and returned to the host memory before a
former batch, causing batch-level out-of-order situations. Unfor-
tunately, current researches did not focus on the challenge of order
preserving to actually deliver the high performance of GPU. De-
spite that DPDK provides packet-level reordering interfaces, DPDK
normally collects only a few packets for reordering, which cannot
effectively alleviate batch-level out-of-order situations.

To address this challenge, we propose BLOP, a Batch-Level Or-
der Preserving framework for GPU - accelerated packet pro-
cessing. We first measure the percentage of out-of-order packets
(up to 26.1%) after GPU processing as the motivation for BLOP.
Then we propose two key observations including (1) Packet order is
strictly maintained inside a batch, and (2) The difference of process-
ing time between core blocks is small, and packet reordering only
needs to entangle very few batches. Finally, we carefully design the
BLOP framework for order preserving. BLOP lightly tags batches in
CPU before sending them to GPU, and efficiently reorders batches
in CPU after GPU processing. Evaluations demonstrate that BLOP
could achieve order preserving with little performance overhead.

2 BLOP DESIGN
2.1 Packet Out-of-Order Rate Measurement

To measure the rate of out-of-order packets after GPU processing,
we build a platform according to a typical GPU-accelerated archi-
tecture [3]. The platform consists of two Dell R730 servers, each
equipped with two Intel Xeon E5-2620 v3 CPUs (6 cores @2.40 GHz)
and one dual-port Intel X520 10G NIC. The servers run Ubuntu with
Linux kernel 3.19.0 with DPDK 16.07. One server carries a NVIDIA
GTX 1070 GPU for packet processing, while the other server is used
to generate TCP flows as the test traffic. Our DPDK-based packet
generator could saturate the 10G NIC.

We have implemented two representative packet processing
tasks including IPv4 forwarding and SHA-1 hashing on GPU. We
send and collect TCP packets and identify out-of-order packets
with unexpected sequence numbers. We calculate the average out-
of-order packet percentage in all generated packets under different

https://doi.org/10.1145/3123878.3132013
https://doi.org/10.1145/3123878.3132013

SIGCOMM Posters and Demos *17, August 22-24, 2017, Los Angeles, CA, USA

packet rates (1 - 10Gbps), which follows the measurement and
calculation methods introduced in [2]. Experimental results show
that with the rise of packet rate from 1 to 10Gbps, the out-of-order
packet percentage increases from 11.3% to 17.9% in IPv4 forwarding,
and from 15.7% to 26.1% in SHA-1 hashing. This serious packet order
violation could severely deteriorate end-to-end throughput, driving
the need of an order preserving mechanism for GPU.

2.2 Key Observations

Now we present two key observations derived from the study of
a typical GPU processing mechanism [1], and use the observations
to instruct the design of BLOP.
OB #1: Packet order inside a batch is strictly maintained before
and after GPU processing. After a batch is copied into GPU’s on-
board memory, each core in the core block processes one packet in
the batch in an in place manner. Each core obtains a pointer to a
packet, processes the packet, and stores the processed packet back
to the pointer. Therefore, when copied back to the host memory,
packets inside the batch possess strictly the same order as that
before processing. This enlightens the batch-level reordering of
BLOP. Since partial packets are already ordered, a sorting of all
packets would be a waste of calculation time and resources.
OB #2: The difference of processing time between core blocks
is small, and packet reordering only needs to entangle very few
batches. First, in most cases, core blocks on the same GPU carry
the same network function and process packets in the same way.
Second, as a co-processor that only executes commands from CPU,
GPU is cleanly isolated from the scheduling of the operating system.
Third, one GPU core carries one thread and suffers no unpredictable
latency penalty of context switching between threads. Finally, the
difference of processing time could be effectively averaged for each
packet by adopting large batch sizes [4]. Thus, we do not have to
maintain a very large buffer to cache batches for reordering.

2.3 BLOP Framework Design

Instructed by the above observations, we propose the BLOP
framework as shown in Figure 1. BLOP inserts two major functional
modules inside the CPU, including a Batch Tagging module in the
ingress pipeline from Network Interface Card (NIC) to GPU, and a
Batch Reordering module in the egress pipeline from GPU to NIC.
Next we describe the two modules in detail.

Batch Tagging: After a worker thread in CPU collects a full batch
or timeout is reached, the Batch Tagging module would mark ev-
ery packet inside the batch with the global unique batch_id in its
metadata. The intuition here is that all output batches copied to
the host memory after GPU processing share a ring buffer. By tag-
ging every packet in a batch, we can easily gather all packets of a
batch that could be reordered in the next step. Besides, the tagging
can be conveniently implemented since DPDK already allocates
a metadata field for every packet. In this way, batch tagging can
be performed in a light-weighted manner, after which the batch is
sent to the corresponding core block in GPU.

Batch Reordering: After GPU processing, the processed batch
will be copied back to the shared ring buffer inside the host mem-
ory. The Batch Reordering module accumulates and monitors the
batch_id of each new batch. If a new batch carries the expected

137

Z. Zheng, J. Bi, H. Yu, C. Sun, J. Wu

25
DPDK
Sool oz I BLOP
=
3
S 15}
=
=
£10
)
3
2
=2 5
H
0 0502 <01<01 < 01<0.1
64 128 256 512 1024 1500
Packet Size (bytes)

Figure 2: Throughput drop caused by order preserving

batch_id, this batch is directly transmitted to the NIC. Otherwise,
the batch is moved to a batch buffer and waits for its turn. However,
if any batch inside the batch buffer has waited for a pre-configured
timeout, this batch is transmitted regardless of the id, which still
could result in some extent of order violation. Nevertheless, this is
a rare case according to OB #2.

3 IMPLEMENTATION AND EVALUATION

We have implemented BLOP on the platform introduced in §2.1,
based on which we evaluate BLOP compared with the packet-level
reordering in DPDK. We configure the batch size as 32 packets,
and set the depth of the batch buffer as 4 batches. Similarly, we
reserve a 128 packet buffer size for reordering in DPDK. We send
TCP packets of different sizes under 10Gbps to the IPv4 forward-
ing task on the GPU, and measure the percentage of out-of-order
packets with the two types of reordering mechanisms respectively,
as well as the latency and throughput penalty for introducing the
order preserving mechanisms. Evaluation results show that the two
mechanisms could reduce the rate of out-of-order packets to an
equally low level (around 4%), since they use the same amount of
buffer. However, DPDK’s packet reordering can cause 80 additional
CPU cycles per packet, while BLOP only consumes 46 additional
cycles for each packet. Furthermore, Figure 2 shows that DPDK in-
curs 2 X throughput drop of the GPU compared with BLOP. Above
evaluations demonstrate the effect and efficiency of BLOP.

4 CONCLUSION AND FUTURE WORK

We have proposed BLOP, an effective and efficient order preserv-
ing framework for GPU-accelerated packet processing. In future,
we will design advanced algorithms and buffer settings to achieve
an optimal trade-off between order preserving, performance, and
resources. We will also identify appropriate tasks to offload to GPU,
and evaluate the rates of out-of-order packets of different tasks.

REFERENCES

[1] Younghwan Go, Muhammad Asim Jamshed, YoungGyoun Moon, Changho
Hwang, and KyoungSoo Park. 2017. APUNet: Revitalizing GPU as Packet Pro-
cessing Accelerator.. In NSDI. 83-96.

S Govind, R Govindarajan, and Joy Kuri. 2007. Packet reordering in network
processors. In IPDPS. IEEE.

Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. 2010. PacketShader: a
GPU-accelerated software router. In ACM SIGCOMM Computer Communication
Review, Vol. 40. ACM, 195-206.

Giorgos Vasiliadis, Lazaros Koromilas, Michalis Polychronakis, and Sotiris Ioan-
nidis. 2014. GASPP: A GPU-Accelerated Stateful Packet Processing Framework..
In USENIX Annual Technical Conference. 321-332.

	1 Introduction
	2 BLOP Design
	2.1 Packet Out-of-Order Rate Measurement
	2.2 Key Observations
	2.3 BLOP Framework Design

	3 Implementation and Evaluation
	4 Conclusion and Future Work
	References

