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Abstract—As one of the most critical cloud services, Bare-Metal Servers (BMS) introduce stringent performance requirements on data
center networks (DCN). Stateful packet filter is an integral DCN component of ensuring connection security for BMS. However, the
off-the-shelf stateful packet filters either are costly for cloud DCNs or introduce significant performance bottlenecks. In this article, we
present CoFilter, which leverages low-cost programmable switches to accelerate the stateful packet filter for BMS. CoFilteruses (1) stateful
process partition to enable complex stateful packet filtering logic on programmability-limited switching ASICs, (2) state compressionto track
tens of millions of connections with constrained hardware memory, and (3) per-tenant packet rate limit and tenant-aware flow migrationto
achieve efficient performance isolation among different tenants. Overall, CoFilterimplements a high-performance stateful packet filter via
the co-design of programmable switching ASIC and CPU. We evaluate CoFilterunder various data center traffic traces with real-world

flow distributions. The evaluation results show that CoFilter remarkably outperforms NetFilter, i.e., forwarding packets at line rate (13x
throughput of NetFilter), keeping packet delay within 1us, and freeing a significant quantity of CPU cores, with rather small memory usage,

i.e., accommodating over 107 connections with only 16MB SRAM.

Index Terms—Bare-metal server stateful packet filter, programmable switch

1 INTRODUCTION

HE Bare-Metal Server (BMS) is becoming an increasingly
Timportant service for data center networks (DCN) [2].
Via offering customers sole access to the entire physical
server, instead of running a hypervisor or being virtualized,
BMS provides an excellent single-tenant environment, raw
processing power, and high reliability [3]. For high-perfor-
mance computing and data-intensive applications, BMS
cloud is far better than virtualized cloud services to achieve
high efficiency and high performance.

BMSs are appealing but also introduce distinctive require-
ments to DCNs. Due to the lack of a hypervisor layer, many
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essential DCN components have to be implemented outside
of BMSs. In particular, stateful packet filter is a critical DCN
element for BMS security. All incoming and outgoing traffic
should go through the stateful packet filter, which provides
per-packet inspection and security assurance by tracking
connection states and dropping illegal packets. To provide a
reliable security guarantee and meanwhile satisfy the strin-
gent performance requirements of cloud applications, build-
ing a high-performance and high-scalability stateful packet filter
is critical to BMS cloud providers.

The off-the-shelf stateful packet filter solutions for BMSs
can be categorized into two types. First, dedicated hardware-
based solutions [4], [5] deliver high performance but incur high
costs. Depending on the bandwidth to cope with, a hardware
packet filter can be quite expensive. For example, a Cisco state-
ful inspection firewall with 35Gbps stateful packet inspection
throughput and 10 million concurrent connections can cost
about 90K dollars [6]. Second, software-based solutions like Net-
Filter/ConnTrack [7] are common in practice, but they have
significant performance issues. On the one hand, software-
based solutions need to occupy more server resources to
achieve higher throughput. On the other hand, software-based
solutions encounter high packet forwarding delay and jitter, as
CPU could introduce a delay of 50 microseconds to 1 ms [8]. In
summary, the above solutions either are prohibitively expensive
or result in a significant performance compromise, making them
impractical for real-world BMS cloud.

In this paper, we propose CoFilter, which aims to imple-
ment a high-performance and low-cost stateful packet filter
with P4-programmable switches [9]. Compared with expen-
sive dedicated hardware and low-performance software,
programmable switches deliver both high performance, i.e.,

high throughput (Tbps) and low latency (hundreds of
nanoseconds), and low cost which is comparable to fixed
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function switching ASICs with the same forwarding rate.
The key idea of CoFilteris the logic and storage partition between
the high-performance programmable ASIC and flexible CPU. The
CPU employed in CoFilter can be either the native switch
CPU for cost savings or the external server CPU for larger
memory and more processing power, depending on the
actual demand. We conclude our contributions as follows.

e We propose CoFilter, a high-performance, scalable,
and low-cost stateful packet filter based on new-gen-
eration P4-programmable switches for BMS cloud.

e  CoFilter (1) overcomes the limited programmability of
switching ASICs via stateful process partition between
the programmable ASIC and CPU with negligible
performance loss, (2) overcomes the limited memory
of programmable ASICs via state compression in the
ASIC with a small number of exact match entries, and
(3) provides excellent performance isolation and
enhances the system’s resistance to attack via per
-tenant packet rate limit and tenant-aware flow migration.

e We explore the practicality and deployability of
CoFilter. CoFilter can be implemented either with one
programmable switch or via accessing an external
server for better performance. CoFilter can be
deployed as the Top-of-Rack (ToR) switch to protect
servers under it, or a packet filter cluster to protect
all servers in a DCN.

e We build both the single-switch and hybrid proto-
types of CoFilter and deploy them on a Tofino switch
and a server. We evaluate CoFilter's performance and
scalability and compare CoFilter with NetFilter under
various data center traces with real-world flow distri-
butions. Evaluation results show that CoFilter can for-
ward data packets at line rate (13x higher than NetFilter)
and keep the upper bound of packet delay at a level
of one microsecond. Moreover, CoFilter accommodates
> 107 connections with only 16MB SRAM and con-
sumes much fewer CPU cores compared with NetFil-
ter. When under attack, the performance isolation can
further lower the attacked tenant’s TCP initial round
trip time (RTT) and flow completion time (FCT) by
> 2and > 5 magnitudes, respectively.

2 BACKGROUND

The stateful packet filter is a critical security element for
cloud data centers. Via inspecting each packet and tracking
each connection, the stateful packet filter can provide con-
nection-level security. A stateful packet filter generally com-
prises two parts. The first one is connection tracking. The
stateful packet filter maintains a Finite State Machine (FSM)
for every connection that passes through it. The state and
other information about each connection are stored in a
data structure named connection table. A new entry is (1)
inserted to the connection table when a new connection
comes, (2) updated as the connection goes, and (3) removed
when the connection finishes. The second one is packet fil-
tering. According to predefined filtering rules, the decision
to permit or reject a packet is made based upon the current
connection state maintained in the connection table, on top
of the packet header information.
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Fig. 1. Software-based packet filter for BMS cloud.

A rack with 32 Bare Metal Servers

In BMS cloud which aims to provide high-performance
services and therefore puts stringent requirements on net-
works. The stateful packet filter can be implemented in
either hardware or software. The hardware packet filter
relies on dedicated hardware to achieve high performance.
But hardware also adds the deployment costs [6] and is
fixed in functionality depending on the vendor.

Sometimes data centers may prefer software-based packet
filter, e.g., NetFilter/iptables [7], which is widely used in
Linux. In general, the software stateful packet filter has the fol-
lowing two-fold drawbacks. (1) Occupying a significant num-
ber of servers. According to our experiment in Section 7.3, a
server with an Intel Xeon 6-core CPU can achieve <5Mpps
throughput for 64-byte packets with ConnTrack enabled. As
shown in Fig. 1, assume that 32 BMSs are deployed on one
rack, and each server connects to the ToR switch with a
25Gbps link. All incoming and outgoing traffic should first
traverse a stateful packet filter cluster which is a group of
server nodes. In this case, the pure software-based solution
needs 0.37K additional packet filter servers per rack to process
the 800Gbps traffic, which is prohibitively costly.

(2) High delay for per-packet tracking. A software-based
system adds a high packet delay of 50 microseconds, which
is comparable to the end-to-end round-trip time in cloud
data centers [8]. Moreover, keeping states of massive flows
requires plentiful calculation, iteration, and kernel memory
access. Such per-packet costly operations put tremendous
pressure on the server CPU and significantly degrade the
overall performance.

3 OVERVIEW OF COFILTER

3.1 Challenges and Key Ideas

We encounter three challenges in CoFilter design. C: Limited
Data Plane Programmability. Switching ASICs pose many
programmability constraints. We introduce two of them
which greatly affect CoFilter design. First, switching ASICs
limit the concurrent memory access to a single memory
location [10]. The programmable switch has a pipeline of
stages, and each stage only has a small number of stateful
Arithmetic Logic Units (ALU) attached to the stateful mem-
ory (i.e., register) to read and write consistent states. How-
ever, the stateful memory can be accessed only once in the
particular stage as the packet goes through the pipeline.
This implies that we should define all state transition rules
and finish state read-and-write operations within one stage.
Second, the stateful ALU only supports two branching oper-
ations [11], i.e., an if-else operation to update registers dif-
ferently. However, for stateful packet filter, there can be
multiple subsequent states at a specific state and altogether
tens of state transitions among all states. Therefore, the lim-
ited programmability of ASIC makes it difficult for CoFilter
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Fig. 2. Architecture and Deployment of CoFilter.

to cover tens of state transition rules for stateful packet
filtering.

To handle (', we partition the complex stateful process-
ing logic between the programmable ASIC and switch CPU
(Section 4.1). We observe that although the state transition is
quite complex, only a small number of packets trigger state
transitions. Based on this, we classify packets into two types:
a small number of control packets that trigger state transitions
and should be tracked, e.g., SYN and FIN packets, and the
majority data packets that just need to be filtered based on cur-
rent connection states. Thus, we propose to slice the stateful
packet filtering logic: control packets are processed by CPU,
while data packets are directly processed on the ASIC. In this
way, CoFilter can implement the complex state transition
based on minority control packets and provide high-perfor-
mance process for most data packets.

Cy: Limited Data Plane Resource. Tracking states of massive
connections requires much memory. However, programma-
ble ASICs have very limited SRAM for state storage. To
store connection states in registers, an intuitive method
would be using exact match-action tables to map each flow
to a register instance directly. Each table entry includes a
flow key, e.g., the 5-tuple (104 bits for IPv4 connections and
296 bits for IPv6 connections) as the match key and some
additional action data bits referring to the register index.
Ten million such entries take hundreds of MB SRAM, which
is far more than 50-100MB SRAM available in programma-
ble ASICs [8]. Therefore, the limited SRAM in ASIC renders
it difficult to achieve per-flow tracking.

To handle Cs, we use state compression to fit tens of mil-
lions of connections with limited SRAM in programmable
dataplane (Section 4.2). Instead of using an exact match-
action table entry for each connection, we apply a general
hash operation to all connections and only maintain exact
match entries to rewrite hash values for collided connections. As
the probability of hash collision is quite low, the scarce
SRAM in existing ASICs would be sufficient for hash colli-
sion resolution. However, the collision calculation requires
considerable programmability, which is beyond the capabil-
ity of programmable ASICs. Therefore, we employ the
switch CPU to calculate hash collisions at the arrival of each
new connection and insert an exact match-action table entry
to ASIC for collided connections. Furthermore, we adapt
our design to the actual memory layout in programmable
ASICs to make full use of the per-stage SRAM.

Cs: Lack of Efficient Performance Isolation. Performance iso-
lation is a critical Quality of Service (QoS) guarantee to net-
work in multi-tenant environments. Multiple tenants share

resources on the switch and thus the behaviour of one tenant
is affected by other tenants. Specifically, if one tenant comes
under attack or a bug causes it to occupy too many resources,
the performance of other tenants can be adversely impacted.
Based on the type of shared resources, we identify two per-
formance isolation requirement. First, tenants share the PCle
bandwidth between the ASIC and switch CPU. Congested
PCle can cause packet loss and larger packet delay. Second,
tenants share the limited SRAM on the ASIC. If one tenant
has too many concurrent flows, the ASIC may not have spare
memory for other tenants.

To handle C;, we propose two targeted methods for the
two isolation requirements identified above. First, for the
shared PCle bandwidth, we introduce per-tenant packet rate limit
to avoid any tenant occupying too much PCle bandwidth
and thus impacting the other tenants’ performance (Sec-
tion 5.1). Second, for the shared memory on the ASIC, we
migrate flows to CPU when there is not enough SRAM on the
ASIC. However, flow migration incurs performance degra-
dation and actually loses the original performance advan-
tages of programmable ASICs. Instead of directly migrating
new-coming flows to CPU when the ASIC is full, we propose
amigration algorithm which considers the practical demands
for providing differential services, and selectively migrates
more flows from the tenant that has lower priority and occu-
pies more ASIC memory (Section 5.2).

3.2 Architecture of CoFilter

Fig. 2 shows the architecture of CoFilter. We take the fat-tree
topology as an example. For simplicity of presentation, we
assume that the x86 CPU is the original switch CPU, and
CoFilter is deployed only at the top-of-rack (ToR) switches.
We will discuss more flexible implementation methods and
deployment scenarios in Section 6.

CoFilter contains three phases. (1) The Performance Isola-
tion phase (Section 5) can prevent any tenant from occupying
excessive resources and impeding other tenants’ performance
via two isolation modules, including Per-Tenant Packet Rate
Limit and Tenant-Aware Flow Migration. The next two
phases are about the design of stateful packet filter logic and
storage. (2) The State Compression phase (Section 4.2) com-
presses the storage space with only a small number of exact
match-action table entries. (3) The Stateful Process Partition
phase (Section 4.1) slices the stateful packet filtering logic
between the ASIC and switch CPU. Specifically, the Packet
Classification module distinguishes control packets and data
packets. The CPU performs Connection Tracking according
to uploaded control packets and updates states stored on the
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ASIC, while the ASIC performs Packet Filtering for data
packets.

Based on the above three phases, CoFilter contains three
packet workflows in Fig. 2, which are represented by lines
of different colors. (1) The red line represents packets of
migrated flows. The Performance Isolation phase sends
packets of migrated flows to CPU. The connection tracking
and packet filtering for migrated flows are completed by the
CPU. Then the non-migrated packets are classified by the
Packet Classification module into control packets and data
packets. These two types of packets also have different
workflows. (2) The blue line represents control packets of
non-migrated flows. Control packets are sent to the switch
CPU. CPU first executes hash collision calculation for each
new connection and modifies the collision resolution entries
in ASICs, and then updates the connection state and syn-
chronizes states stored on the ASIC. (3) The black line repre-
sents data packets, which are directly processed on the
ASIC. The State Compression phase uses only a small num-
ber of exact match entries to map each connection to an indi-
vidual register instance. Then the Packet Filtering module in
the Stateful Process Partition phase filters illegal packets.
The migrated flows are totally processed in CPU and
undergo the slowest path, while the non-migrated flows
have the majority data packets directly processed on the
ASIC and only the minority control packets going to CPU.

4 COFILTER DESIGN

In this section, we present the CoFilter design which imple-
ments a high-performance stateful packet filter based on the
cooperation of the programmable ASIC and switch CPU.
In Section 4.1, CoFilter slices the stateful packet filtering logic
between the ASIC and CPU to implement stateful processing
while guaranteeing performance. In Section 4.2, CoFilter sli-
ces the state storage between the ASIC and CPU to scale to tens
of millions of connections with limited SRAM.

4.1 Stateful Process Partition

To handle the limited programmability of switching ASICs
and fully express the state transition logic of stateful packet
filter, we slice the stateful packet filtering logic between the
programmable ASIC and switch CPU.

A key observation is that for the stateful packet filter,
packets that trigger state transition take up only a small pro-
portion of a connection, while most packets have no impact
on the state. We call the former control packets, including
three packets (SYN, SYN/ACK, and ACK) in the three-way
handshake before a connection is established, four packets
(FIN, FIN/ACK, and ACK*2) in the four-way handshake
when a connection is about to close, and RST packets. We
call the latter data packets, including ACK and PSH packets.

Based on this observation, the insight of CoFilter is to par-
tition the stateful packet filtering logic between the ASIC
and switch CPU, as shown in Fig. 3. The ASIC does not
need to be concerned about how states should be updated.
Instead, they identify control packets and send them to the
switch CPU. The CPU tracks connection states and updates
the states stored on the ASIC in real time. Then the ASIC
can perform packet filtering for data packets based on the
stored states. In this way, CoFilter can process most data
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packets on the ASIC with high performance and also imple-
ment the complex state transition logic for those minority
control packets with the help of the switch CPU.

Instead of storing the original TCP connection states, we
store simplified 2-bit states on the ASIC to save memory.
Each state on the ASIC may correspond to multiple realistic
states on the CPU. The CPU is responsible for converting the
original connection states to the corresponding compressed
states in switch registers, as shown in Fig. 3. At first, the state
is initialized as 0, representing a nonexistent connection.
Only the SYN packet is a valid control packet and changes
the state from 0 to 1. At state 1, SYN/ACK, ACK, RST, and
retransmitted SYN packets are taken as control packets
which are sent to CPU. Notice that SYN/ACK and retrans-
mitted SYN packets just change the state on the CPU, i.e,,
between SYN SENT and SYN_RECYV, while the state on the
ASIC remains at 1. In other words, both SYN SENT and
SYN_RECV on the CPU correspond to state 1 on the ASIC.
The last ACK packet in the three-way handshake triggers
state transition from SYN RECV to ESTABLISHED on the
CPU. When a connection is established, data transmission is
allowed, and thus the state on the ASIC should change, i.e.,
from 1 to 2. During data transmission, ACK packets are
always considered as data packets and processed on the
ASIC at line rate until the FIN packet is received. On receiv-
ing the FIN packet, the state on the ASIC changes from 2 to 3.
During the four-way handshake, control packets include
FIN/ACK, ACK, RST, and retransmitted FIN packets. The
four states on the CPU, i.e.,, FIN WAIT, CLOSE WAIT,
LAST_ACK, and TIME_WAIT, are merged into the common
state 3. Finally the CPU will reset the register state as 0 when
the four-way handshake finishes.

4.2 State Compression

To handle the limited dataplane resource problem and fit
tens of millions of connections with limited SRAM in pro-
grammable ASICs, we compress connection states via slic-
ing the state storing between the ASIC and switch CPU. We
propose two key ideas. First, we design a CPU-assisted
three-phase collision settlement scheme which employs a
small number of exact match-action table entries to store
connections. Second, we adapt our design to the per-stage
memory layout in programmable ASICs. Next, we will
respectively illuminate these two ideas.

Collision Settlement Scheme. Before demonstrating our
design, we first briefly introduce how to store states in regis-
ters and why hash is needed to track plentiful connections.
In programmable ASICs, registers are organized into arrays
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of instances. A naive method to store connection states is to
use exact match-action tables to map flow keys, such as 5-
tuples, to register indexes. As analyzed in Section 2, this
method is impractical due to overmuch SRAM consump-
tion. Hash is a commonly used technique to compress mem-
ory space. If we use hash, e.g., crc32, to map flow keys to
register indexes, the SRAM for exact match-action table
entries can be freed.

However, hash inevitably brings collisions, i.e., two dif-
ferent flow keys are mapped to the same register index.
Hash collision resolution requires considerable memory
and programmability, and cannot be implemented by the
programmable ASIC alone. Therefore, we propose a CPU-
assisted three-phase hash collision settlement scheme, as
shown in Fig. 4. First, Hash_Tbl generates a hash value based
on the flow key of each connection via a default table entry.
Then Col_Tbl exactly matches with collided connections and
rewrites hash values. Specifically, each table entry corre-
sponds to a collided flow whose hash values should be
rewritten. The Col_Tbl entries are added and deleted by the
CPU, which maintains the mapping relationships between
all flow keys and register indexes, and allocates a new avail-
able register instance for a collided connection. Finally,
Reg_Tbl uses a default table entry to read connection states
from the corresponding register instances and store the state
into a 2-bit state metadata, which will be transmitted to the
Packet Filtering module for further filtering.

Take a whole TCP connection as an example. (1) The first
SYN packet of a connection is taken as a control packet and
is uploaded to the CPU. The Hash Collision Resolution
module on the CPU calculates hash values for this packet to
decide whether this new connection collides with existing
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connections. If a collision happens, CPU will allocate a new
available register instance and rewrite the hash value for
this connection. Meanwhile, CPU will insert a new table
entry to Col_Tbl in the ASIC, with the flow key as the exact
match field, and updating the hash value to the new index
as the action data. (2) The subsequent control packets also
go to CPU but can skip the Hash Collision Resolution mod-
ule. (3) The subsequent data packets remain on the ASIC
and are matched by the above three tables. (4) When the last
control packet arrives and the connection is to finish, CPU
will delete the corresponding table entry from Col_Tbl.

Adaption to Multiple-Stage Programmable ASICs. The archi-
tecture of programmable switches [12] posses two restric-
tions on our design. First, the per-stage memory limitation
demands that we should deliberate on the resource occupa-
tion of each table and place them in proper stages. Second,
the concurrency of tables within one stage and dependency
between cross-stage tables demand that sequential opera-
tions must be implemented in multiple stages in sequential
order. Therefore, we design the state storing specifically so
that it can fit into ASIC architecture and make full use of
limited resources.

Fig. 5 shows how to adapt our three-phase collision set-
tlement scheme to the multi-stage programmable ASIC.
Notice that the basic collision settlement requires three
stages, while the multi-stage optimization can further utilize
more stages (6 stages in Fig. 5 as an example) to store more
connections. We allocate register arrays in multiple stages
and define an individual Reg_Tbl to access the register array
from stage 3 to 6. An additional Col_Tbl pairs with each
Reg_Tbl and is placed at the stage before Reg_Tbll, i.e., from
stage 2 to 5. Hash_Tbl at stage 1 implements a default hash
operation and is shared by all Col_Thl-Reg_Tbl pairs. Com-
bined with Packet Classification and Packet Filtering mod-
ules in Stateful Process Partition, CoFilter workflow is as
follows: (1) When packets arrive at the ASIC, Classify_Tbl in
the Packet Classification module singles out control packets,
and sets the field ctl of metadata md as 1. These control
packets skip the Connection State Acquisition module and
directly go to Upload _Tbl in the Packet Filtering module,
which will upload them to the CPU. Data packets with

Resource Usage Vacant TCAM B Ternary Match TCAM B Vacant SRAM [ Exact Match SRAM R Register SRAM 1
Processing Stages
Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7
if md_migrate=1 Col_Tbl Reg_Tbl
if md_sID=2 Rewrite hash Read register
Migrate_Tbl Hash_Tbl if md_sID=3 Col_Thl Reg_Thl Filter_Tbl
Migrate to CPU Calculate hash ‘ Rewrite hash Read register Filter packets
Classify_Tbl — if md_sID=4 Col_Tbl Reg_Tbl Upload_Tbl
Packet Classification —_— Rewrite hash Read register Send to CPU
) \~ if md_sID=5 Col Tbl Reg_Thl
if md_ctl=1 Rewrite hash Read register
dip=10.0.0.1/32 -> default -> default -> default -> default -> default -> default -> drop
md_migrate=1 md_sID=hash1(key) md_state=read(rID. md_state=read(rID md_state=read(rID. md_state=read(rID tcp_flag=2,state=2
md_rID=hash2(key) -> forward
default -> md_ctl=0 key=(tuple0) -> key=(tuplel) -> key=(tuplel) -> key=(tuple2) -> default ->
tcp_flag=syn/fin -> md_rID=rIDO md_rID=rID1 md_rID=rID1 md_rID=rID2 send_to_CPU
Table Entries md_ctl=1

Fig. 5. Cross-stage optimization to store massive connections.
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md.ctl =0 will get into the Connection State Acquisition
module. (2) In the Connection State Acquisition module,
first Hash_Tbl maps the flow key (104-bit 5-tuple) to an s-bit
metadata md.sID and an r-bit metadata md.r/D respec-
tively. md.sID corresponds to 2° Col_Tbls at the next 2°
stages. md.rID corresponds to 2" register instances in each
register array and should be smaller than the upper register
memory size within one stage. At the md.sID" stage, the
data packet will hit Col_Tbl if this packet belongs to a col-
lided connection, and Col_Tbl will rewrite md.sID and
md.rID. Then at the md.sID + 1™ stage, Reg Tbl reads the
state from the md.rID" register instance and writes it into
the 2-bit metadata md.state. (3) In the Packet Filtering mod-
ule, Filter_Tbl exactly matches with md.ctl and md.state and
drops packets according to filtering rules. Upload_Tbl also
exactly matches with md.ctl and md.state to send control
packets to CPU.

Once the register is full and no available instances can be
allocated, we should migrate flows to CPU. To achieve this,
we use a migration table, i.e., Migrate_Tbl, to identify flows
that should be migrated. Then the packets that hit this table
should be directly forwarded to CPU. However, flow migra-
tion incurs performance degradation and thus fairness
problem among tenants, we will present how to decide the
migrated flows in detail in Section 5.2.

5 MULTI-TENANT PERFORMANCE ISOLATION

Keeping good performance isolation among tenants is criti-
cal but challenging for cloud data center networks. To satisfy
service-level agreement on the stateful packet filter, CoFilter
should provide good performance isolation for connections
of different tenants. In this paper, we identify two important
performance isolation problems in the CoFilter system.

The first one refers to control packet isolation. The process
partition uploads a small number of control packets via
PCle to achieve an efficient division between the ASIC and
switch CPU, but also brings some hidden troubles in the fol-
lowing two aspects. First, the PCle bandwidth between the
ASIC and CPU is limited and shared by tenants. According
to our experiment in Section 7.6, only 2.4 Gbps can cause
PCle congestion, with TCP initial RTT increasing from
< 1000 microseconds to > 10° microseconds. Second, the
performance of the shared switch CPU will degrade with
more packets to be processed. Once any tenant is under
attack (e.g., SYN flood) and sends massive control packets,
both the congested PCle and busy CPU make other innocent
tenants suffer severe performance degradation. Thus, CoFil-
ter should provide control packets isolation to prevent any
tenant from taking up excessive PCle bandwidth and CPU
resources. Otherwise, the other innocent tenants might
undergo unfair performance degradation during connection
establishment and release.

The second one refers to data packet isolation. CoFilter
achieves high performance via storing connection states
and processing the majority data packets on the ASIC. How-
ever, the ASIC has limited memory (mainly SRAM) for state
storage which are shared by all tenants. If any tenant has
too many connections and exhausts the SRAM, connections
from other tenants have to fall back on the CPU and data
packets are also unfairly directed to the low-performance
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software datapath. As a result, the innocent tenants that
take up fewer network resources actually have to suffer seri-
ous performance reduction caused by the aggressive tenant.
Therefore, CoFilter should prevent the aggressive tenants
from taking up too much ASIC memory to protect the per-
formance of tenants that occupy few resources.

Next, we will respectively introduce the per-tenant control
packet rate limit and tenant-aware flow migration to solve the
above two problems and guarantee performance isolation.
Note that we focus on the specific performance isolation
problems caused by our co-design. However, some general-
purpose aspects such as bandwidth are rather typical in lat-
est software-defined frameworks and thus not our major
concerns.

5.1 Per-Tenant Packet Rate Limit

To provide control packet isolation among different tenants,
we design a dynamic per-tenant rate limit mechanism in the
switching ASIC. We use meters in the Color-Blind mode
offered by the programmable switch to detect the conges-
tion. We define N + 1 meters for N tenants. meter, is used
for the overall control packet rate, and meter; to metery are
used for the NV tenants. Although the total rate should be
the sum of measurements for all N tenants, we still need N
+1 meters because it is difficult to add up these N meters to
get the sum in real time on the ASIC. The meters can mark
packets as green, yellow, or red based on two threshold
rates, Peak Information Rate (PIR) and Committed Informa-
tion Rate (CIR), and their associated burst sizes (PBS and
CBS) [13]. Congestion occurs when the overall control
packet rate reaches its respective threshold. We can then
rate limit on the tenants whose control packet rates reach
their respective threshold rates. Note that our rate limiting
approach includes both congestion detection and rate limit-
ing. Congestion notification is not our primary concern, but
can be easily supported on programmable switches, for
example, by sending notification packets or marking pack-
ets when congestion is detected.

5.2 Tenant-Aware Flow Migration

To provide data packet isolation among tenants, intuitively
we should reallocate SRAM on the ASIC, i.e., migrate flows
to CPU from aggressive tenants that occupy more SRAM, so
that released memory can be used by other tenants.

However, flow migration is far from straightforward.
First, we need to decide how many flows from each tenant
should be migrated to the CPU. Our principal is to take ten-
ant priorities into consideration and migrate more flows
from tenants with lower priorities. Second, we need to
decide which flows should be migrated to the CPU for each
tenant. Our principle is to keep as much traffic on the ASIC
as possible to reduce the overall performance degradation
from flow migration. Next we will carefully design the flow
migration process based on the above two aspects.

Goal 1: Take tenant priority into consideration when deciding
tenant’s flows should be migrated. The cloud data centers often
hope to provide differential services for different tenants to
make more economic benefits. In this case each tenant is
given a priority. Tenants with higher priorities can be allo-
cated with more ASIC resources.
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Fig. 6. Flow migration problem.

Therefore, we define the priority-based flow migration
problem as shown in Fig. 6. Formula (1) and (3) give the trig-
ger condition and ultimate goal of flow migration. We define
two SRAM utilization thresholds, i.e., the quantity of flows
stored on the ASIC. Specifically, 0, is the SRAM utilization
that triggers flow migration, and 65 is the expected resultant
utilization after migration. When the SRAM utilization
reaches 6;, we should migrate at least 6; — 0, flows to lower
the utilization to 6. Intuitively, given the flow number y;
and priority w; of tenant 4, for tenants with the same number
of flows on the ASIC, we should migrate fewer flows from
those with higher priorities. Also, for tenants with the same
priority, we should migrate more flows from those having
more flows on the ASIC. Therefore, we use - ”l as the criterion to
determine the number of flows to be migrated for tenant i. Assume
that tenants are sorted in the order of decreasing % as
expressed in Formula (2). First, we migrate flows from the
first tenant with the largest ”f , until it has the same 2 as the
second tenant. Then we migrate flows from the first two ten-
ants until they have the same £ as the third one. And so on
until the total flow number on the ASIC reduces to the secu-
rity threshold 6,. Finally, only flows from the first m tenants
are migrated, while the last N — m tenants have no flows to
be migrated because their £ is small enough, as shown in
Formula (4) and (5). Based on the above rocedure, the calcu-
lated flow number for each tenant y, may be a decimal
instead of an mteger Therefore, the final number of flows for
each tenant y; is a number rounded down to ¥, as shown in
Formula (6). We summarize the above procedure as the Basic
Algorithm in Fig. 7. However, this intuitive algorithm brings
a high complexity of ®(6; — 6,), since the concurrent flow
number can be tens of millions.

We further optimize the algorithm and reduce the com-
plexity to ®(NN?). Considering that a BMS server is for exclu-
sive occupation by one tenant, the tenant number N in a
rack should not be larger than the BMS number, e.g., a few
dozen. Therefore the complexity can be greatly reduced.
The key idea of the Optimized Algorithm is to traverse all
possible values of m from 1 to N and to calculate whether m
can satisfy. Only the first m tenants with the largest £ have
flows to be migrated, and their £- after migration should still
be larger than the largest Z among the last N —m tenants,
which is fﬁzfl denoted as ;. Therefore, there are at least
Upin = Z:Zl Upnin * Wi + Z;Ln +1Yi flows on the ASIC after
migration. If U, is larger than 6, the current m is infeasible.
Otherwise, we can find an object v and u > w»,, so that if
the first m tenants migrate y — u* w; flows, the resultant
Y. = w should be larger than w,,;,,. This algorithm traverses N
p0551ble values for m, and has a complexity of O(N) in line 8
during each iteration. Therefore, the Optimized Algorithm
brings a ©(N?) complexity.
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Optimized Algorithm

U« Zf\;l Yis
- - if U > 6, then
Basic Algorithm form=11 N do
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Fig. 7. Priority-based flow migration algorithm.

Goal 2: Optimize overall flow performance when deciding
which flows should be migrated for each tenant. So far, we have
designed the flow migration algorithm to speculate how
many flows should be migrated for each tenant from a
global perspective. Now we need to decide which flows
should be migrated for each tenant.

To make full use of the high-performance ASIC and
lower the performance reduction brought by migrating
flows to CPU, we hope to keep as much traffic on the ASIC as
possible. An intuitive method would be migrating flows
with the smallest sizes to CPU. However, this needs per-
flow counters and an exact match-action table entry for each
migrated flow, which bring large memory overhead. We
use LPM instead of exact match to match migrated flows.
Specifically, we maintain per-prefix flow size counters on
the ASIC and migrate all flows under the common prefix
each time instead of just one flow. Larger-length prefixes
can be merged into smaller ones, and vice versa, thus can
save much memory. We use a Migrate_Tbl which contains
LPM entries to identify flows that should be migrated. The
largest prefix length is defined by users and is taken as the
basic prefix unit for prefix merging and splitting. The coun-
ters on the ASIC record flow sizes and are periodically
cleared by the CPU. The CPU also periodically pulls up-to-
date counter values and chooses the prefix with the smallest
size to migrate.

We make classified discussions about the dynamic flow
migration process as shown in Fig. 8. First, when a new flow
fi1 arrives and if the dataplane utilization exceeds 6;, the flow
migration algorithm outputs y;, which is the supposed num-
ber of flows on the ASIC for each tenant after flow migration.
We traverse all tenants according to the below procedure.
Each time we find the prefix p with the smallest flow size. If p
can be aggregated with existing migrated prefixes to produce
a smaller prefix, we delete the existing entries and add the
new entry. Otherwise, we add an entry with the match field p
to Migrate_Tbl. Second, if an old flow f, which is migrated to
CPU finishes, we check whether the related Migrate Tbl
entries can be deleted or split, so that if flows with this prefix
are established again, they can have the opportunity to
remain on the ASIC, instead of matching with the entries and
going to CPU again. Suppose that prefix p is the match field
of the table entry in Migrate_Tbl that matches f,. We iterate
all sub-prefixes that contain f> (including p itself) in the order

Authorized licensed use limited to: Tsinghua University. Downloaded on April 05,2022 at 03:10:54 UTC from IEEE Xplore. Restrictions apply.



2256

Priority-based Flow

New flow f; arrives Old flow f; finishes

Migration Algorithm
Exceed 6, ?, U <9,? M l f2 on ASIC?
min < 027
N - ASIC v
Y| Nl N
p=fip emmmmm oS

Run flow migration Done - =-- -
algoritm L ===~ Find migration
- Y prefixp, f, €p

Automatic LPM

Select migration Find sub-prefix p,

prefix p Merging and Splitting f,Ep
p can be p has ongoing N
merged? flows?
& N  Add Y Y
v migration prefix p can be
| split?

Merge
migration prefix

Split & delete
migration prefix

Fig. 8. Dynamic flow migration process.

of increasing prefix length until the largest prefix length, i.e.,
the basic prefix unit. If we find a sub-prefix p; that contains
no flows except fs, we split p into p; and other prefixes {p;},
delete the p entry and add {p;} entries. Both the prefix split-
ting and aggregation are necessary. The prefix aggregation
can save memory space especially under large-scale attack.
The prefix splitting can make larger prefixes easier to be
deleted, thus the connections which have finished can return
to the ASIC when they are established again.

6 IMPLEMENTATION AND DEPLOYMENT

6.1 Implementation Patterns

The implementation of CoFilter relies on both the high-per-
formance switching ASIC and flexible CPU. We can directly
implement the control plane functions, such as state transi-
tion, as a CoFilter Agent process in the native switch CPU
(single-switch pattern) or on a remote CPU (hybrid pattern).
CoFilter Agent communicates with the switching ASIC
through a switch driver in the switch OS.

Single-Switch Pattern. The single-switch pattern partitions
the stateful processing between the switch ASIC and the
switch CPU. The PCle channel between the switch CPU and
switch ASIC is used to transmit packets. Therefore, a pro-
grammable switch alone can implement the complete state-
ful packet filtering, with advantages of low cost and easy
management. However, using the switch CPU has two
drawbacks. First, the switch CPU might have quite poor
computing power and impede the overall performance. To
solve this, we can just replace the original weak CPU with a
superior one. Second, the PCle bandwidth between the
switch CPU and the ASIC is limited. Thus the rate limit
module in Section 4.1 is very necessary to avoid PCle
congestion.

Hybrid Pattern. The hybrid pattern can improve the above
two drawbacks of single-switch pattern by introducing an
external server. First, the CPU of the external server pro-
vides better performance than the native switch CPU. Sec-
ond, the server and switch are connected with Ethernet
links, which have much larger bandwidth than the PCle
channel.

As shown in Fig. 9, the data packets are processed directly
on the switch ASIC, and the control packets are forwarded to
the CoFilter Agent on the server. CoFilter Agent provides
stateful processing for control packets and indirectly controls
the switch ASIC (e.g., install rules and update registers)
through a switch driver in the switch OS. We implement
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Fig. 9. CoFilter Implementation of the hybrid pattern.

CoFilter Agent as a DPDK application, which can bypass the
Linux kernel to further improve packet process performance.

6.2 Deployment
Based on the actual needs of data centers, CoFilter has two
deployment methods.

First, CoFilter can be deployed on ToR switches to protect
the BMSs under the rack. We simply replace the original
ToR switch with a programmable switch deployed with
CoFilter. Besides the stateful packet filtering of CoFilter, the
programmable switch can also perform other network func-
tions, e.g., load balancing. If the hybrid pattern is adopted
and external server CPUs are required, we can reserve
resources on the servers under the ToR switch, and turn
them into a remote memory and calculation resource pool,
which can be directly accessed through Ethernet links.

Second, considering the limited resources on the pro-
grammable switch (as shown in Section 7.5, we can combine
multiple CoFilter instances as a stateful packet filtering clus-
ter to support more connections. Specifically, CoFilter can be
deployed on many programmable switches, which combine
together to form a cluster to provide stateful packet filtering
for more selected BMSs. All traffic should pass through this
cluster for traffic filtering before they get into the BMSs.
Also, these programmable switches can share resources on
one server for the hybrid pattern.

7 EVALUATION

7.1 Overview

Setup. The test-bed is shown in Fig. 10. The physical topol-
ogy consists of a programmable switch and two servers.
The switch is equipped with a Tofino chip [9] and an Intel
Pentium 4-core 1.60GHz CPU. Both servers are equipped
with a 6-core Intel Xeon E5-2620 2.40GHz CPU and are con-
nected to the switch via four 10Gbps links. By reusing the
switch and servers, we can implement a logical topology
that includes two CoFilter prototypes, a single-switch pat-
tern and a hybrid pattern, with NetFilter as a comparison.

CofFilter: Hybrid NetFilter

! 1
sorver 1 Server 1 L | senvers |1
" = 1 10Gbps
( coFilter Agent | [ Netfilter ] CoFilter: Single Switch ' Links |
i \ l\ Switch : Switch I :
- 1 10Gbps |
Switch switch CoFilter Agent . Linkf | | | | :
I
((swichos || | ([ swichos || | [Cswichos ]| [severz ||
! 1
[ coFilterps | [ switchps | [ coFilterpa || | Physical Topology |
]

N

N 0
Docker1:
Server App

Docker2:
Client App

Server 2 Logical Topology

Fig. 10. Test topology used throughout the evaluation.
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Fig. 11. Empirical traffic distributions.

The switch is deployed with CoFilter.p4 for CoFilter and the
Switch.p4 function for NetFilter. For throughput and packet
delay test, we use MoonGen [14], a scriptable high-speed
packet generator to generate packets in line rate. For end-to-
end performance, we create two Docker containers in Server
2 to establish a simple client/server application and use an
empirical traffic generator [15] to generate traffic and mea-
sure the flow completion time (FCT). For multi-tenant per-
formance isolation testing, we use different IP prefixes to
simulate flows from different tenants.

Packet Traces. We use four realistic flow distributions to
generate traffic for our experiments, i.e., DCTCP [16],
VL2 [17], FACEBOOK CACHE [18], and FACEBOOK
HADOQORP [18]. All of these traces derive from patterns
observed in production data centers. DCTCP is from a web
search data center and contains a mix of short and long
flows. FACEBOOK CACHE is from Facebook’s Cache data
center. VL2 and FACEBOOK HADOOP mainly handle off-
line analysis and data mining. Fig. 11 shows the cumulative
distribution function (CDF) and probability density func-
tion (PDF) of flow sizes for four traces. Data mining traces
(VL2 and FACEBOOK HADOOP) are quite heavy-tailed:
most flows are small, while only a small portion of large
flows contributes to a substantial portion of the traffic. In
comparison, FACEBOOK CACHE and DCTCP are less
heavy-tailed.

Objectives. We evaluate CoFilter in four aspects. First, we
conduct end-to-end experiments and measure FCT of CoFil-
ter and NetFilter under different workloads (Section 7.2).
Second, we perform micro-benchmarking comparisons of
CoFilter and NetFilter concerning throughput and packet
delay (Sections 7.3 and 7.4). Third, we make a comprehen-
sive analysis of CoFilter’s scalability in terms of resource
usage and ASIC capacity, and compare CoFilter with NetFil-
ter with regards to the CPU utilization (Section 7.5). Finally,
we test the effect of the performance isolation proposed
in Section 5 (Section 7.6).
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Fig. 13. Throughput comparison.

7.2 End-to-End Evaluation

We implement an end-to-end experiment and take FCT as
an overall performance metric. We refer to an empirical traf-
fic generator [15] to generate traffic patterns and measure
FCT. The client in the Docker container sends flows with
size drawn from the empirical flow size distributions of
four real-world data center networks, and the server in the
other container just replies with a flow with the requested
size for each request.

Flow Completion Time. Fig. 12 shows the FCT for four
traces at workloads of 1, 4, and 7Gbps. Because control
packets take up a small part of a flow, there is little differ-
ence between CoFilter's two patterns. With workload
increasing, more flows are competing for the same link, and
therefore, FCT increases. We can see that NetFilter is more
vulnerable to the impacts of workload volumes, as the FCT
of NetFilter increases faster than CoFilter with larger work-
loads. Among the four traces, VL2 has the largest FCT,
mainly because that VL2 has more large flows. Under the
background workload of 7Gbps, CoFilter can lower the aver-
age FCT by 10 to 376 microseconds compared with NetFilter.
We also measure the 99% FCT in consideration of small
flows, and we find that the variation trend of the 99% FCT
is similar to that of the average FCT. These results indicate
that although CoFilter has larger control packet delay than
NetFilter, the overall end-to-end performance of CoFilter
remarkably wins out because FCT is primarily decided
upon the majority data packets.

7.3 Throughput of CoFilter

Data Packet Throughput. Fig. 13 shows the throughput of var-
ious packet sizes for CoFilter and NetFilter when processing
data packets. To generate small packets in line rate, we use
MoonGen (using four 10Gbps ports) with four CPU cores.
Because data packets only pass the switching ASIC without
going through CPU, the single-switch pattern and hybrid
pattern have the same throughput. In DCNs, small packets
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Fig. 12. Flow completion time comparison under different volumes of background workload.
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Fig. 14. Data packet delay comparison for different sizes under different volumes of background workload.

with no more than 1000 bytes can take up more than 50%
among all packets [19]. At an average packet size of 1500
bytes, CoFilter and NetFilter have similar throughput. CoFil-
ter always achieves full 40Gbps line rate, while NetFilter sig-
nificantly degrades performance for smaller packets. When
the packet size come to 64 bytes, NetFilter achieves only
3Gbps, 13x smaller than CoFilter. In summary, CoFilter
inherits the high performance of programmable ASICs and
greatly improves throughput especially for small packets.

7.4 Delay of CofFilter

As for the packet delay experiment, we use MoonGen to
start two transmission tasks to send two types of traffic: one
for the background workloads of different volumes and one
for the prioritized traffic to test packet delay. As control
packets and data packets take different paths on CoFilter,
we measure the delay of them separately.

Data Packet Delay. Fig. 14 compares the delay of data
packets under different workloads for different packet sizes.
The packet delay of NetFilter rises tremendously as back-
ground workload increases and also trends larger with
larger packet sizes, while CoFilter always has small packet
delay. The more specific comparison is shown in Fig. 15,
which is the delay and delay variation measurement for
1024-byte packets. According to Fig. 15a, as background
workload increases from 0% to 70%, the mean delay of Net-
Filter increases from 27 to 87 microseconds, and the 99%
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Fig. 15. Data packet delay under different workload.

delay (PP99) increases from 55 to 194 microseconds. In con-
trast, different delay lines of CoFilter coincide with each
other and maintain at the level of 1 microsecond. Fig. 15b
shows the instantaneous packet delay variation (IPDV) and
Standard Deviation (STDDEV). IPDV is the difference of the
delay between successive packets [20], and STDDEV is the
standard deviation of all packet delays. With background
workload increasing, the STDDEV and IPDV of NetFilter
increase from 10* to 10° nanoseconds, while those of CoFilter
remain at around 10 nanoseconds. Compared with NetFilter,
CoFilter considerably reduces data packet delay (20x) and
jitter (10%x).

Control Packet Delay. To evaluate the overhead of process-
ing control packets at switch CPU, we use SYN packets to
represent control packets and measure SYN packet delay.
Fig. 16 demonstrates the SYN packet delay of CoFilter and
NetFilter under varied background workload. We can see
that both the single-switch and hybrid pattern of CoFilter
keep the delay at a rather stable range, i.e., 200 and 50 micro-
seconds respectively, but the SYN packet delay of the single-
switch pattern is larger than that of the hybrid pattern,
mainly caused by the poor performance of the native switch
CPU. In contrast, NetFilter is easier to be influenced by the
background traffic. As the workload increases from 0 to
7Gbps, NetFilter's SYN packet delay increases by 2.5x, from 25
to 63 microseconds. This is because that for NetFilter, data
packets are competing for CPU resources with SYN packets,
while data packets are not processed by CPU for CoFilter.
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Fig. 16. SYN packet delay variations with varied workloads.
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TABLE 1 TABLE 2
Hardware Resources Consumed by CoFilter With the Capacity Cost Comparison Between CoFilter
of 2M Connections and a Tolerance for 10k Hash Collision and Hardware-Based Solutions

Resources Usage Percentage  Metrics Equipment Power Stateful
Match Crossbar 182% (Per Tbps) Cost Cost Throughput
Static Random Access Memory 43.7% CoFilter $3,600 150W 1Tbps
Ternary Content Addressable Memory 11.5% Cisco Firepower 4110 $288,989 3,520W 112Gbps
Very Long Instruction Word Actions 19.3% Stateful Firewall
Hash Bits 25.8% Netronome Agilio CX $10,792 <512W 135Gbps
Stateful Arithmetic and Logjic Units 9.1% ﬁ‘zﬁch SCmartN 1&55 $14.540 L65W 20Gb
P H 4 ellanox ConnectX- , ps

acket Header Vector 5% EN 2x25GhE NIC

The values are normalized by the usage of Switch.p4 [21].

From above, we conclude that for long-lived connections,
CoFilter brings significant performance improvement by proc-
essing data packets on the ASIC. For short-lived connections,
the performance is hardly improved, since most packets are
processed on the CPU for both CoFilter and NetFilter. How-
ever, when short-lived and long-lived connections co-exist,
CoFilter still outperforms NetFilter, because the packets of all
connections compete for CPU resources on NetFilter, while
only the control packets occupy CPU resources on CoFilter.

7.5 Scalability and Cost of CoFilter
ASIC Resource Usage. We evaluate the hardware resources
that CoFilter needs on top of the baseline switch.p4 [21].
Table 1 shows the normalized hardware resources usage of
CoFilter when storing 2M (M = 10°) connections and 10K
(K =10°%) Col _Tbl entries, which means that 10k collided
connections of 2M in total are acceptable. We can see that
CoFilter mainly consumes 43.7% SRAM for exact match
action tables (Col_Tbl) and stateful memory, and double
Meter ALU for packet rate limit. Besides, CoFilter needs
18.2% match crossbars to select keys for the exact match,
11.5% TCAM for LPM match, 19.3% very long instruction
word actions to implement compound actions, 25.8% hash
bits for table lookup and 24.5% packet header vector to trans-
mit metadata across different stages. We can see that SRAM
and meter ALU are the primary consumption for CoFilter.
ASIC Capacity. We test the capacity of connections with
varied resource sizes. Fig. 17a demonstrates the relationship
between the required SRAM and 2-bit connection states that
CoFilter can accommodate, considering the additional
SRAM consumption of Col_Tbl for collided connections. We
define the collision rate 0 as the collision probability for con-
nections. For example, § = 107° means that we need one
Col_Tbl entry for every 10° connections. If 6 =0, i.e., no

connection collides with each other and all the ztMB SRAM
on the ASIC can be used to store 2-bit connection states, the-
oretically we can store 4z x 105 connections, ignoring the
additional SRAM needed in hardware implementation. Fur-
thermore, considering hash collisions, i.e., when 6 > 0,
Col_Tbl entries also requires SRAM. As 0 increases, more
Col_Tbl entries are needed to rewrite collided hash values,
and therefore fewer connections can be stored. As is shown
in this figure, even when 6 reaches 1073, CoFilter can store
> 107 connections with 16MB SRAM, and > 10% connec-
tions with 64MB SRAM.

CPU Resource Usage. We compare the CPU utilization of
NetFilter and single-switch pattern CoFilter under different
circumstances. We first vary the arrival rate of new flows, as
shown in Fig. 17b. With new flow arrival rate increasing,
CoFilter occupies more CPU because more control packets
are sent to the CPU. NetFilter also has increasing CPU utili-
zation for the same reason. However, we can see that the
new flow arrival rate has a more significant impact on Net-
Filter, which claims up to a 45.4% CPU utilization when the
new flow arrival rate is 32K flows/second. Fig. 17c shows
the CPU utilization under different workload bandwidth.
NetFilter achieves up to 400% CPU utilization under the
workload of 20Gbps, while CoFilter keeps the usage at less
than 13% all along. Notice that CPU usage > 100% is
because of the NetFilter server has four CPU cores. These
results indicate that the server CPU of NetFilter becomes the
bottleneck at high network speeds and new flow arrival
rates, while CoFilter can significantly save CPU.

Cost. We compare the equipment and power costs between
CoFilter and three other hardware-based solutions, as well as
the stateful throughput supported, as shown in Table 2.
According to [22], a programmable switch costs about $3,600
and 150 Watts (W) per Tbps. Programmable switches can
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Fig. 17. ASIC capacity and CPU resource usage of CoFilter.
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Fig. 18. Performance isolation effect.

always process packets at line rate, so the stateful throughput
can be up to 1Tbps. For commodity hardware, we take the
Cisco Firepower 4,110 stateful inspection firewall [6] as an
example. According to [6], a 320Gbps firewall costs about
$90,309 and supports only 35Gbps of stateful throughput. We
can conclude that this firewall costs about $288,989 per Tbps,
which is 8 times more than CoFilter, and supports only
112Gbps of stateful throughput per Tbps, which is 9 times
smaller than CoFilter. We also analyze two smartNIC-based
OVS offload solutions, including the Netronome Agilio CX
2x25GbE and the Mellanox ConnectX-5 EN 2x25GbE. Based
on the data from [23], [24], the prices per 50Gbps are $527 and
$710, so the prices per Tbps are approximately $10,792 and
$14,540. However, the high performance of smartNICs applies
only to minimal flows. When there are about 64K flows, the
performance of these two smartNICs drops dramatically. At a
64B packet size, they can deliever only 6.6Gbps and 2.9Gbps
respectively [25], which means 135Gbps and 59Gbps per Tbps.
Based on the above, we can conclude that CoFilter has a signifi-
cant cost advantage over other hardware-based solutions.

7.6 Performance Isolation of CoFilter
In this part, we test the effectiveness of two performance
isolation techniques proposed in Section 5.

Control Packet Isolation of Per-Tenant Packet Rate Limit. The
per-tenant rate limit in Section 5.1 isolates control packets
by imposing rate limiting on tenants that send large num-
bers of control packets. The most direct manifestation of too
many control packets is the increased packet delay of con-
trol packets. Therefore, we use the TCP initial RTT, i.e., the
time between the client sending SYN packets and receiving
SYN/ACK packets, as the metric to perform the evaluation.
We add two tenants to test the performance affection of one
vicious tenant on the other innocent tenant. We use the IP
address prefix to distinguish the traffic of different tenants.
Specifically, tenant one is a protected tenant that sends SYN
packets at a low rate, while tenant two is a malicious tenant
that suffers or initiates a SYN flooding attack. We test the
RTT variations of both tenants when tenant two maliciously
initiates an attack and when we perform control packet iso-
lation. Fig. 18a shows RTT as a function of time. At the first
stage starting from time 0s, only tenant one has 5000 new
flow arrivals per second, i.e., 5000 SYN packets are sent per
second. We can see that when there is no attack, tenant one’s
RTT is rather small, ranging from 100 microseconds to
1000 microseconds. At the second stage, starting at 40s, ten-
ant two is suddenly attacked by SYN flooding with 5 new
connections per second. The PCle channel is soon saturated
by tenant two, and we can see that RTT increases
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dramatically to more than 10° microseconds. That is to say,
without isolation, the performance of tenant one is heavily
damaged by tenant two. At the third stage, we rate limit ten-
ant two by dropping packets and reducing the rate of tenant
two to the same as that of tenant one. As the figure shows,
with control packet isolation, RTT of tenant one is largely
improved, dropping by 2 ~ 3 magnitudes.

Data Packet Isolation of Tenant-Aware Flow Migration. To
evaluate the data packet isolation effect of the flow migra-
tion in Section 5.2, we use FCT as the metric and test FCT
variations without and with isolation. We add thirty tenants
with the same priority but different flow sending patterns.
We set the thresholds 6, and 6, in the flow migration algo-
rithm, as 10K and 5K, respectively. Fig. 18b shows the aver-
age FCT versus time for these tenants. At the beginning, all
tenants send short TCP connections (evenly distributed
between 1 and 10 £B) with an average load of 1Gbps. We
can see that the FCT is rather small (10 ~ 100 microseconds)
because short connections can be soon finished and the
ASIC memory are released for newly-arrived connections.
At time 20s, these tenants suddenly send different numbers
(100, 400, 1600) of long-lived connections which last for
more than 200 seconds. We can see that the FCT of all ten-
ants increase to larger than 10° milliseconds. This is because
that when no isolation is applied, the subsequent new-com-
ing short connections are migrated indiscriminately to the
CPU as a result of the long-lived connections occupying the
ASIC memory without releasing. We apply the flow migra-
tion algorithm at time 100s. Since the ASIC utilization
reaches 6, the flow migration algorithm calculates the sup-
posed numbers of flows for each tenant and migrates flows
from the ASIC to the CPU. The tenants with the smallest
number of long-lived connections have the least flows on
the ASIC, and no migration entries are installed to the ASIC
for them. As shown in the figure, the average FCT decreases
to tens of millisecond, because the newly arrived short con-
nections can be directly processed on the ASIC. However,
the other twenty tenants have to migrate part of their
newly-arrived short connections to the CPU, which causes
varying degrees of delay in their FCT.

8 RELATED WORK

In this section, we show related works on stateful packet fil-
ter and maintaining states on programmable data planes.

Commodity Stateful Packet Filter. Based on dedicated hard-
ware, the commodity stateful packet filter [4], [5] can provide
rich security features and high packet processing bandwidth,
but are inevitably expensive. Depending on the bandwidth
to cope with, a hardware packet filter can be quite expensive.
For example, a security appliance with only 35Gbps stateful
packet inspection throughput can cost up to $90K [6]. Once
the device needs to be upgraded, the cost may rise even
more. Furthermore, commodity stateful packet filter can pro-
cess packets with user-defined formats and filter packets
based on customized patterns. CoFilter yields much higher
flexibility and is much cheaper compared to stateful packet
filters with the same packet bandwidth.

Software-Based Stateful Packet Filter. There are already
many software stateful packet filters in the literature.
In the early stages, software network packet filters such as
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NetFilter/iptables [7] are based on Kernel functions. These
software solutions are commonly used but suffer from seri-
ous performance problems. Later, to improve the perfor-
mance of software-based packet processing, DPDK
proposes to bypass the kernel and process packets in user
space. However, as a general computing platform, CPUs
have inherent limitations on packet processing bandwidth.
Processing larger traffic requires additional CPU cores,
which also introduces a linear increase in cost.

SmartNIC-Based Stateful Packet Filter. To improve perfor-
mance and release more CPU cores on the server, some work
offloads the stateful packet filtering function to programma-
ble NICs, i.e., the smartNIC. The manycore smartNICs, such
as Netronome [26] and Cavium, offload stateful packet filter-
ing across many embedded CPU cores. However, they suffer
from serious performance issues because the CPU cores add
tens of microseconds of additional latency, and their scalabil-
ity for higher speeds (such as 100Gbps and 200Gbps) looks
bleak [27]. The FPGA smartNICs, such as Mellanox [28], off-
load stateful packet filtering to FPGA. Compared with CoFil-
ter using P4-programmable ASICs, FPGA smartNICs (i) are
harder to program due to the complexity of FPGA; (ii) pro-
vide worse performance, such as < 20 Mpps throughput for
64B packets when scaling to higher flows, while CoFilter can
promise line rate due to the ASIC design; (iii) are mroe
expensive when produced in large volumes and consume
more power.

Maintaining States on Programmable Switches. The high per-
formance and flexibility of programmable switches have
motivated much research work to enhance network func-
tions and applications [22], [29], [30], [31], [32], [33], [34],
[35]. However, maintaining massive states (e.g., per-flow
states) on the programmable switches is not scalable due to
memory limitations. Some network monitoring and mea-
surement applications, such as UnivMon [36] and Elastic
Sketch [37], use sketches that make a good trade-off between
memory and accuracy, but focus on estimating statistical
traffic metrics, such as flow size. Therefore, they are not suit-
able for storing accurate per-flow states. There are also some
generic solutions for external memory expansion [38], e.g.,
by using RDMA, which allows programmable switches to
leverage external DRAM on servers. Unlike CoFilter, external
memory expansion does not increase the state capacity on
the ASIC, but rather improves the performance of accessing
external memory. External memory expansion can be seen
as a complementary solution to CoFilter.

9 CONCLUSION

Stateful packet filter is a critical component for BMS cloud
but has stringent requirements for both high performance
and high scalability on networks. CoFilter leverages pro-
grammable switches to meet these requirements and pro-
poses a co-design between programmable ASICs and CPU.
Furthermore, CoFilter overcomes the limited memory and
programmability of switching ASICs via process partition
and hash optimization, and proposes two performance iso-
lation techniques to enhance the system’s resistance to
attacks. CoFilter inherits the advantages of programmable
ASICs, including high throughput, low packet delay, and
low cost, while achieving high scalability, low switch CPU
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usage, and excellent performance isolation as demonstrated
by our hardware implementation and evaluation.
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