
2490 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 35, NO. 11, NOVEMBER 2017

HYPER: A Hybrid High-Performance Framework
for Network Function Virtualization

Chen Sun, Jun Bi, Senior Member, IEEE, Zhilong Zheng, and Hongxin Hu, Member, IEEE

Abstract— Network function virtualization (NFV) offers the
potential for both enhancing service delivery flexibility and
reducing overall costs by virtualizing network functions that
are traditionally implemented in dedicated hardware. However,
the flexibility of NFV comes with considerable compromises
since virtual machine carried functions could introduce signif-
icant performance overhead. In this paper, we present a novel
high-performance framework called HYPER, which combines
programmable hardware infrastructure and traditional software
infrastructure in NFV to achieve both high performance and
flexibility for supporting virtualized network functions (VNFs).
In HYPER, we design a mediator layer to hide underlying
infrastructure heterogeneity from the NFV orchestrator to sim-
plify VNF management. In addition, we design a SLA-aware
service chaining algorithm in HYPER to leverage the benefits
of the hybrid infrastructure to fulfill both functional and per-
formance requirements from service subscribers (or tenants).
To optimize resource utilization efficiency, we also introduce a
performance-aware VNF placement algorithm in HYPER, which
accommodates both resource and performance requirements
in placing VNFs. We implement HYPER in a testbed based
on OpenStack and ONetCard. Experimental results show that
HYPER reduces the forwarding latency of a service chain by
40% to 67% compared with data plane development kit -
based implementation, while maintaining the flexibility of VNF
management.

Index Terms— Network function virtualization, hybrid
infrastructure, high performance, SLA-aware service chaining.

I. INTRODUCTION

IN TRADITIONAL networks, enabling new network ser-
vices often needs to add new proprietary middleboxes.

However, finding the space and power to accommodate these
middleboxes is becoming increasingly difficult, along with the
increasing costs of energy and capital investment. There is no

Manuscript received April 1, 2017; revised September 12, 2017; accepted
September 25, 2017. Date of publication October 6, 2017; date of current
version December 1, 2017. This work was supported in part by the National
Key R&D Program of China under Grant 2017YFB0801701 and in part by the
National Science Foundation of China under Grant 61472213. (Corresponding
author: Jun Bi.)

C. Sun, J. Bi, and Z. Zheng are with the Institute for Network
Sciences and Cyberspace, Tsinghua University, Beijing 100084, China,
also with the Department of Computer Science, Tsinghua University,
Beijing 100084, China, and also with the Tsinghua National Labora-
tory for Information Science and Technology, Beijing 100084, China
(e-mail: c-sun14@mails.tsinghua.edu.cn; junbi@tsinghua.edu.cn; zhengzl15@
mails.tsinghua.edu.cn).

H. Hu is with the School of Computing, Clemson University, Clemson, SC
29634 USA (e-mail: hongxih@clemson.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2017.2760438

general hardware framework for middleboxes, and they are
hard to scale out at peak load.

Network Function Virtualization (NFV) was recently intro-
duced to address the limitations of dedicated middleboxes
and offers the potential for both enhancing service deliv-
ery flexibility and reducing overall costs [1]. Considerable
efforts have been devoted to exploiting the flexibility of
virtualization to provide more scalable services [2], [3].
Rajagopalan et al. [2] presented a state-centric and system-
level abstraction for elastic middleboxes called Split/Merge,
based on which Gember-Jacobson et al. [3] proposed OpenNF
to help NFV network operators accurately monitor and manip-
ulate network states. Current research on NFV mainly targets
on software-based Virtualized Network Functions (VNFs),
which could provide high flexibility and high scalability
with low costs. However, above benefits of NFV come with
considerable compromises. Especially, packet processing in
software-based VNFs could introduce significant performance
overhead (e.g., Ananta SMux at 100 Kpps can add from 200μs
to 1ms of forwarding latency), which may be unacceptable
for some network applications, such as algorithmic stock
trading and high performance distributed memory caches that
demand ultra-low (a few microseconds) latency [4]. Advanced
technologies such as Data Plane Development Kit (DPDK) [5]
can decrease the forwarding latency and improve throughput
to a large extent. However, according to our experiments,
DPDK’s processing latency of a stateful firewall instance is
still 6.4× of hardware-based processing latency (in average),
and its latency jitter of 64 byte packets could vary from 8μs
to 430μs. Such long latency and significant jitter are still
unacceptable for many network applications.

To solve the performance problem of NFV, some recent
work proposed to use programmable hardware accelera-
tors (e.g., FPGA) to support NFV [6], [7]. Ge et al. [6]
revealed the gap between software-based middleboxes and
commodity hardware, and proposed to integrate elastic FPGA
into OpenStack-based NFV to improve NFV performance.
Kachris et al. [7] recognized FPGA as an ideal platform for
supporting NFV, since FPGA can provide both the flexibility
of virtualization and the high performance of specialized
hardware. Indeed, contemporary FPGA devices can perform
network processing functions at up to 400 Gbit/sec line
rates. Thus, such programmable and reconfigurable hardware
can achieve almost equal performance to dedicated ASIC
devices [8]. However, those existing solutions only utilize high
performance hardware to support NFV, without leveraging the

0733-8716 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

SUN et al.: HYPER: HYBRID HIGH-PERFORMANCE FRAMEWORK FOR NFV 2491

benefits and features of commodity servers that could provide
abundant resource and high flexibility.1

To address above challenges and limitations, in this paper,
we present HYPER, a HYbrid high-PERformance framework,
which leverages programmable hardware to establish a high
performance infrastructure and seamlessly integrates it with
traditional software infrastructure in NFV, to achieve both
high performance and flexibility for supporting VNFs. HYPER
can accommodate state of the art hardware and software
platforms as long as they expose the unified control inter-
faces. We design a mediator layer in HYPER for hardware
and software VNF management to hide the heterogeneity
of underlying infrastructure from the NFV orchestrator. The
orchestrator simply needs to describe its requirements for new
VNF instances, while the mediator can automatically identify
the most suitable infrastructure for placing the instances. In
addition, in virtue of the hybrid infrastructure in HYPER,
service providers are capable of provisioning various Service
Level Agreements (SLAs). Therefore, to differentiate from tra-
ditional function-aware service chaining [12]–[15], we propose
a SLA-aware service chaining algorithm in HYPER leveraging
high performance of hardware and flexibility of software to
satisfy both performance and functional requirements from
tenants. We also introduce a performance-aware VNF place-
ment algorithm to improve resource utilization efficiency and
satisfy performance requirements in placing VNFs.

We summarize our contributions as follows:

• We propose a novel high-performance NFV framework
called HYPER, which leverages hybrid infrastructure
combining hardware and software features to achieve bo-
th high performance and flexibility for supporting VNFs.

• We design a mediator in HYPER to hide infrastructure
heterogeneity from the NFV orchestrator and relieve
the orchestrator from infrastructure-related VNF manage-
ment.

• We introduce a SLA-aware service chaining algorithm to
meet both performance and functional requirements from
tenants. We also design a performance-aware VNF place-
ment algorithm to optimize resource utilization efficiency
in placing VNFs.

• We implement a prototype of HYPER based on Open-
Stack and ONetCard [16] to demonstrate its feasibility.
Experimental results show that a hybrid service chain
built in HYPER can achieve up to 67% latency decrease
compared with a pure software-based service chain.

The rest of the paper is organized as follows. We elaborate
challenges in Section II. The design of HYPER framework is
articulated in Section III. We present the SLA-aware service
chaining algorithm in Section IV and the performance-aware
VNF placement algorithm in Section V. We introduce the
implementation in Section VI, and present our evaluation in
Section VII. We summarize the related work in Section VIII,
and conclude this paper in Section X.

1TCAM resources on hardware devices are actually rather limited and
expensive to support complex and resource-intensive VNFs such as NAT
and DPI (e.g., top grade switches from most manufacturers include a TCAM
of 2-4K OpenFlow entries [11]).

II. DESIGN CHALLENGES AND CONTRIBUTIONS

In this section, we reveal three major challenges in intro-
ducing hybrid infrastructure in HYPER.

A. Management of Heterogeneous Infrastructure

HYPER aims to accommodate cutting-edge programmable
hardware platforms, such as FPGA, P4 [9], and RMT [10],
and software virtualization platforms, such as ClickOS [17],
Split/Merge [2], and OpenNF [3], to provide both high per-
formance and flexibility for NFV. However, above techniques
could vary in external control interfaces and internal process-
ing strategies. This creates the non-trivial task of managing
VNFs on heterogeneous infrastructure. To relieve the orches-
trator from infrastructure-related management, we design a
mediator layer to automatically identify the infrastructure type
and location to deploy VNF instances. Besides, we extend
platforms integrated in HYPER with unified control interfaces
and expose them to the mediator, which could hide the
interface difference of heterogeneous platforms and simplify
VNF management. We demonstrate its feasibility by extending
the VNF Manager of both ONetCard based hardware VNFs
and commodity servers carried VNFs.

B. SLA-Aware Service Chaining

Hybrid infrastructure of HYPER provides the possibility of
provisioning services that meet various SLAs including for-
warding latency, throughput, and resource reservation. There-
fore, it is challenging for the orchestrator to perform service
chaining with respect to both functional and SLA requirements
from tenants. Existing research efforts [12]–[15] can only
chain required functionalities. However, we design a novel
SLA-aware service chaining algorithm that can take both
functional and SLA requirements as inputs. The algorithm can
leverage high performance of hardware, and rich resource and
flexibility of software, to quickly construct a qualified hybrid
service chain.

C. Performance-Aware VNF Placement

HYPER tenants might raise performance requirements in
placing VNFs. Also, the hybrid infrastructure integrated in
HYPER could vary in performance and capabilities. In tradi-
tional VM-based NFV, the strawman placement mechanism is
to satisfy resource requirements of VNF instances. In contrast,
we introduce a fast and general VNF placement algorithm
that can quickly decide the infrastructure type and location to
place new instances with respect to resource and performance
requirements, and accommodate those instances with minimal
device costs.

III. HYPER FRAMEWORK

As shown in Fig. 1, we abstract a NFV-based network into
four layers in HYPER. The orchestrator layer makes decisions
of VNF deployment, destruction and migration, and service
chaining. The mediator layer translates decisions from the
orchestrator into policies and delivers them to correspond-
ing modules including the VNF managers that control the

2492 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 35, NO. 11, NOVEMBER 2017

Fig. 1. HYPER framework overview.

life cycle of hardware or software VNFs, and a forwarding
policy enforcer that could be implemented based on a SDN
controller to issue forwarding policies to steer traffic among
VNF instances. In the bottom, we combine the programmable
hardware infrastructure with the software infrastructure to
construct a hybrid infrastructure layer.

A. Unified Control Interfaces for Hybrid Infrastructure

VNFs in HYPER framework can come from service
providers, third-party vendors, managers of programmable
hardware platforms such as P4 and RMT, and software
virtualization platforms such as ClickOS, Split/Merge and
OpenNF. To accommodate hybrid infrastructure in HYPER,
similar to [1], each VNF carried by hardware or software
owns its corresponding VNF Manager (VNFM), which can be
integrated into HYPER under the management of the mediator.

Various types of infrastructure creates the challenge of
managing VNFs carried by different platforms. Instead of
burdening the mediator to manage heterogeneous VNFMs with
different interfaces and internal logics, we design a unified
control interface set in HYPER for VNFMs of all platforms.
We require that VNFMs should implement the recommen-
dations of ETSI standards [18]. Specifically, we focus on a
minimal set of control interfaces including:
- deploy_instance(instance)
- destruct_instance(instance_ID)
- configure_instance(instance_ID,

configuration)
- migrate_instance(old_ID, new_ID, flows)
- get_instance_state(instance_ID)

An instance entity for hardware is represented as processing
logic and configurations. For example, P4 [9] programs are
first converted into an intermediate table dependency graph
representation, then mapped onto the hardware platform’s
specific logics. For the software infrastructure, deploying a
new instance usually means installing a system image of the
VNF into a newly instantiated VM.

VNF instances can be deployed and destructed through
deploy_instance and destruct_instance

interfaces. The mediator can configure all instances through
the configure_instance interface. As the instance
configuration formats vary in different VNFMs, we propose
that each VNFM formats their configuration into formal
languages such as XML. In this way, the configuration of all
VNFMs can be transformed into byte strings and transmitted
to VNFs. The mediator is also capable of instructing a
specific VNFM to migrate some flows from the old one to
the new one through the migrate_instance interface.
During runtime, the orchestrator also needs to query instance
states, including resource utilization, workload, and current
performance through get_instance_state interface, for
network monitoring, service chaining, and VNF management.

Above interfaces can be easily implemented (about 300 LoC
in ONetCard based VNFMs). They could hide the underlying
heterogeneity and simplify VNF management for the mediator.

B. Mediator

1) Why Mediator: Both software VNFM (S-VNFM) and
hardware VNFM (H-VNFM) can be accommodated into the
HYPER framework. Therefore, both software and hardware
implementations of the same VNF, such as stateful firewall,
IDS, may co-exist in HYPER networks. However, software
and hardware implementations may vary in performance and
resource capacity. Therefore, the orchestrator is burdened
to pick the most suitable infrastructure to support a VNF
and select the best location to place it. For instance, if the
orchestrator intends to deploy a new IDS instance in hybrid
infrastructure, it must first decide what kind of infrastructure,
i.e. software or hardware, is used to build the new instance.
Then, the orchestrator should find the most suitable location
to place it. Finally, the orchestrator needs to inform the
related VNFM to deploy the instance. Coupling orchestration
and placement tasks together could decrease the efficiency
of orchestration and make HYPER difficult to integrate new
platforms.

To address the above problem, we design a mediator module
in HYPER framework. The purpose of designing the mediator
is to take service chaining and VNF management policies
from the orchestrator and deliver the policies to the most suit-
able modules through infrastructure-related calculation. The
mediator also collects VNF status, including performance and
resource utilization, from VNFMs and provisions the status
to the orchestrator. Therefore, to deploy a VNF, the orches-
trator could simply describe its requirements on the new
instance. Then, the mediator can automatically pick the best
infrastructure and location to accommodate the new instance.
This decoupling of orchestration and placement tasks could
relieve the orchestrator from infrastructure-related calculation
and automate VNF placement. Besides, when integrating a
new type of infrastructure into HYPER, we could only extend
the mediator to recognize the new infrastructure without any
changes of the orchestration process.

2) Mediator Design: The mediator takes service chaining
policies or VNF management policies from the orchestrator
and delivers tasks to corresponding modules. During runtime,
the mediator collects VNF status from VNFMs and provisions

SUN et al.: HYPER: HYBRID HIGH-PERFORMANCE FRAMEWORK FOR NFV 2493

Fig. 2. Decision tree of the mediator.

the statistics to the orchestrator for managing service chaining.
We consider four major kinds of tasks provided by the orches-
trator including service chaining, VNF lifecycle management,
VNF migration, and VNF status query. We build a Decision
Tree for the mediator as shown in Fig. 2. For each type of
policies, the mediator processes them as follows.

3) Service Chaining: For service chaining policies,
the mediator first calculates the forwarding path of the flow
according to the order of required instances. Then, it delivers
the hop-by-hop path to the forwarding policy enforcer.

4) VNF Lifecycle Management: For VNF destruction poli-
cies, the mediator will steer traffic away and inform the corre-
sponding VNFM to destroy the instance. For VNF deployment
policies, the orchestrator will inform the mediator of the type,
performance and resource requirements of the new instance.
The mediator will proceed through the following steps. The
first step is to decide the infrastructure type. If software perfor-
mance can satisfy all requirements, the mediator will inform
the S-VNFM to deploy a software instance for this VNF,
as we assume software resources are relatively abundant and
cheap compared with hardware [19]. Otherwise, the mediator
will calculate the most suitable hardware device. Detailed
algorithm will be elaborated in Section V.

5) VNF Migration: The mediator will deploy a new
instance, inform the corresponding VNFM to migrate some
flows from the old instance to the new one, and destruct the
old instance. Finally, the mediator will inform the forwarding
policy enforcer to steer affected flows to the new instance.

6) VNF Status Query: The orchestrator will query the
resource usage, workload, and performance of each VNF
instance for SLA-aware service chaining. The mediator will
gather status from VNFMs and report it to the orchestrator.

C. Orchestrator

The orchestrator performs dynamic service chaining for
tenants. Service chaining in HYPER is more complex due to
various capabilities of the hybrid infrastructure and massive
SLA requirements. The orchestrator runs a SLA-aware service
chaining algorithm to meet both functional and performance

Fig. 3. Example topology for service chaining.

requirements, which will be introduced in Section IV. It
then issues the chaining decisions to the mediator, which
automatically decide and perform VNF placement. In HYPER,
the orchestrator is totally unaware of such a process, and is
relieved of infrastructure-related placement.

IV. SLA-AWARE SERVICE CHAINING

Benefiting from the hybrid infrastructure, HYPER is capable
of provisioning services of different performances or SLAs.
Therefore, we design a SLA-aware service chaining algorithm
in HYPER to satisfy both functional and SLA requirements
from different tenants. As there exist several instances of the
same VNF in the network, this algorithm addresses the chal-
lenge of quickly choosing the path that contains required VNFs
and satisfies forwarding latency, throughput, and resource
reservation (capacity) requirements.

A. Performance and Resource Model for VNFs

First, we establish a performance and resource model for
hardware and software based instances. We mainly consider
TCAM as resource for hardware, and CPU as resource for
software. The model is denoted as follows:

hardware_instance software_instance
| latency, | latency,
| throughput_total, | throughput_total,
| throughput_used, | throughput_used,
| tcam_total, | cpu_total,
| tcam_used | cpu_used

The orchestrator periodically queries resource usage and
performance of VNF instances from the mediator as con-
straints for SLA-aware service chaining.

B. Service Chaining Algorithm

Based on the above resource model, we introduce the
SLA-aware service chaining algorithm. The algorithm can be
divided into three steps. Fig.3 depicts an example topology.
Step 1 (Functionality Fulfillment): Some required VNFs might
not have been deployed in the network. The algorithm first
goes over required functionalities, and instantiates undeployed
VNFs according to performance and capacity requirements to
make sure that at least one instance of each required VNF
exists in the network.
Step 2 (Latency Fulfillment): We satisfy the forwarding latency
requirement first, as it is relatively more complex compared

2494 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 35, NO. 11, NOVEMBER 2017

with other factors. Assume that a service chain should contain
Function F1, F4, F2 in sequence. As shown in Fig.3, F1
instances reside in nodes 1, 4, F4 in nodes 3, 5 and F2 in
node 2. Possible paths of this chain can be expressed with
node I Ds as:

S −→ Stage 1(1, 4) −→ Stage 2(3, 5) −→ Stage 3(2) −→
We take the above expression as three stages, each contain-

ing nodes that support one required function. We use Dynamic
Scheduling Algorithm to find the path with the lowest latency,
denoted as P . We denote the starting and ending mark of P
as S, E . Here S, E are simply two symbols and do not refer
to any nodes. For each node Nx,i in stage i , the shortest path

passing Nx,i is denoted as short (S
Nx,i−−→ E). We have:

short (S
Nx,i−−→ E) = short (S −→ Nx,i) + short (Nx,i −→ E)

And:

P = arg min
Nx,i

(short (S
Nx,i−−→ E)) f oreach Nx,i in stage i

We iterate each stage from S to E until we find the path
with the lowest latency. We record the shortest delay from S
to node x in stage i as s[x][i], and store the previous node
on this path in stage i − 1 as pre[x][i] to finally generate
the entire path. We denote the forwarding latency between
node x and y as latency_t[x][y], and the processing latency
of node x as latency_p[x]. The algorithm is articulated in
Algorithm 1. Finally, we generate a path with the short-
est forwarding latency. If this latency cannot satisfy tenant
requirements, we iterate through each node in the path, request
VNF placement with more strict latency constraint, and re-run
the algorithm. If all VNFs are implemented in hardware and
the latency still exceeds tenant requirement, HYPER will not
be able to form a qualified service chain under this latency
constraint.

The major computational complexity of the algorithm
comes from the loop expressions. We denote the node number
in stage i as s[i]. The total loop number is

∑n−1
i=1 s[i]× s[i +

1] < (n − 1) × (max(s[i]) f or i ∈ [1, n])2. Therefore,
if we denote the maximum node number in each stage as
Smax , the computational complexity is O(n ∗ S2

max).
Step 3 (Throughput and Capacity Fulfillment): The algorithm
checks whether all nodes alongside the path can provide
sufficient throughput and capacity. If so, a qualified path is
generated and the algorithm ends. If any nodes fail the check,
the nodes’ latency should be marked as infinite to avoid
picking this off-grade node in future, or deploy a new instance
with more strict throughput or capacity constraints. Then the
algorithm goes back to Step 2 and continues the cycle until a
qualified path is produced or no possible paths exists.

A possible design choice for addressing through-
put or capacity insufficiency is to separate a tenant’s
flow into two parts and use two instances of the same
hardware or software VNF to process them in parallel.
However, we argue against this solution. Since many VNFs
such as stateful firewalls [20] need to maintain flow states,
it is more appropriate to process all the traffic of one flow in
one instance.

Algorithm 1: Dynamic Scheduling for Latency Fulfillment

Input: Number of stages: n, s[x][i] initiated as I N F I N I T E .
Output: Nodes along the shortest path P: node[n].
/* Iterate each stage from 1 to n and calculate s[x][i] */1
foreach i ∈ 1 to n do2

foreach Node x ∈ Stage i do3
foreach Node y ∈ Stage i − 1 do4

/* Calculate s[x][i] through node y in stage i − 1. */5
if s[y][i − 1] + latency[x][y] < s[x][i] then6

s[x][i] = s[y][i − 1] + latency_t[x][y] + latency_ p[x];7
pre[x][i] = y;8

/* Last node in P is the node with the shortest latency in stage n. */9
node[n] = arg minNx,n s[x][n];10
/* Iterate backwards to find previous nodes. */11
foreach i ∈ n − 1 to 1 do12

node[i] = pre[node[i + 1]][i];13

V. PERFORMANCE-AWARE VNF PLACEMENT

For VNF placement, the orchestrator describes requirements
of a new instance including functionality, performance and
resource reservations. The mediator is therefore challenged
to quickly find a suitable infrastructure type and location to
satisfy all requirements. Therefore, we present a performance-
aware VNF placement algorithm to address the following two
major challenges.

First, the mediator should decide whether to place the VNF
on hardware or software. Assume the new instance can be
support by both hardware and software, i.e. both hardware
and software versions of images of the same NF have been
integrated into HYPER. As mentioned above, if software
performance cannot fulfill SLA requirements, the mediator
should pick hardware. Otherwise, we assume that software
resources are relatively abundant and cheap compared with
hardware [19] and place the instance on software.

Second, network dynamics can be frequent since network
traffic volumes could vary significantly and affect VNF work-
loads. In HYPER, we perform the VNF placement in two
major scenarios, including relatively slow offline initialization
where could happen only occasionally, and fast online VNF
deployment, which could be triggered frequently.

A. Offline Initialization

During network initialization, service providers need to
distribute all VNF instances into hardware and software
infrastructure. To reduce operational cost, we try to support
all VNF instances with the minimal costs through the offline
placement.

We pre-build a traffic model of each VNF instance, which
has been well illustrated [21], [22] and is out of the scope
of this paper. We use the model to estimate latency, through-
put, and peak TCAM or CPU resource consumption of the
instances, and decide whether to support them with hard-
ware or software, as mentioned above. Placement for hardware
and software are similar due to the nearly identical resource
models. Thus, we mainly introduce the algorithm for hardware.

We formulate a bin packing problem [23] to minimize the
overall costs to support all required VNF instances while

SUN et al.: HYPER: HYBRID HIGH-PERFORMANCE FRAMEWORK FOR NFV 2495

TABLE I

NOTATIONS USED IN VNF PLACEMENT ALGORITHM

meeting TCAM resource constraints and performance require-
ments of H-VNF instances (Table I presents the notations).

Min
∑

hεH

ch · φh (1)

subject to

gmh ≤ λmh , ∀mεM, hεH (2)
∑

hεH

gmh = 1, ∀mεM (3)

∑

mεM

gmh · αm ≤ εh, ∀hεH (4)

βm ≥ ζh, i f gmh = 1 (5)
∑

mεM

gmh · γm ≤ ηh , ∀hεH (6)

1) Objective Function: We want to minimize the costs to
support all required VNF instances. Let the variable φh be
set to denote device h is occupied where hεH . The objective
function is described in Eq.1 and minimize the overall costs.
Cost here refers to a weighed sum of all consumptions
including power, CAPEX and OPEX. The weight on each
factor can be assigned by the network operator.

2) Assignment Constraints: We set λmh = 1 if instance
m from set M can be carried by device h (in terms of
functionality). Let gmh denote whether instance m is placed
at device h. Eq.2 ensures that any module m is placed at a
device that can support it. Eq.3 ensures that a given module
m is placed once.

3) Resource Constraints: Each hardware device h has εh

TCAM resources. αm denotes an upper bound of TCAM
resources that a instance requires. When multiple instances co-
locate at the same device, Eq.4 assures that the device TCAM
capacity is respected.

4) Performance Constraints: For each instance m, we pre-
estimate the latency and throughput requirements. βm is the

upper bound of tolerated processing latency, and γm is the
upper bound of required throughput. Eq.5 assures that the
processing latency ζh can meet the loosest requirement of
the instance βm . Eq.6 assures that VNF instances placed at
node h cannot exceed its throughput capacity ηh .

Offline initialization is not frequent compared to online
VNF instance deployment. We prefer to endure relatively slow
calculation and get the maximum optimization on resource uti-
lization efficiency. We adopt the bin-completion solution [23]
and achieve optimal placement with acceptable running time.

B. Online VNF Instance Deployment

For VNF migration or dynamic SLA fulfillment, the medi-
ator needs to deploy a new instance. As mentioned above,
we prefer software implementation of the new instance if
software performance can fulfill SLAs. If not, we place the
new instance on hardware. We seek to distribute the new
instance to the most suitable infrastructure.

The baseline of traditional runtime VNF placement algo-
rithms are Least Used Host placement algorithm and Least
Busy Host algorithms [24]. In comparison, we define suit-
ability by introducing a greedy strategy. A device is the
most suitable if its performance is satisfactory and remaining
resource merely meets the peak requirements of the new
instance to minimize resource over-provisioning. Besides, our
algorithm should quickly adapt to VNF deployment dynamics.
Due to the similarity of hardware and software infrastructure,
we only introduce the algorithm for hardware infrastructure.
We denote the instance as mn, and define f i tness of each
hardware node h as:

f i tness(h) = (αmn/εh f) ∗ (γm/ηh f), ∀hεH

The resource-greedy algorithm has two major steps. First,
we select hardware devices with adequate performance and
resource as candidate set Hc for the new instance. A qualified
device h in Hc should meet the following formulations.

βmn ≥ ζh, αmn ≥ εh, γmn ≥ ηh , ∀hεHc

Then, we find the device from step 1 with the largest
f i tness value to place the new VNF instance. In this way,
the most suitable device is selected, to which the new instance
will be deployed. The resource-greedy algorithm is relatively
fast since it only has to iterate all nodes once to select the best
fit node for the new instance. Suppose there are n nodes. The
calculation time complexity would be O(n), which is optimal
and could adapt to quick network dynamics.

VI. IMPLEMENTATION

We selected ONetCard [16], a programmable hardware
platform based on NetFPGA, as hardware resource and com-
modity servers as software resource. ONetCard is an accel-
eration card supporting two 10G network interfaces based
on PCI Express. Its center is the FPGA device Kintex7
(XC7K325T-2), which connects network sub-system, storage
sub-system, CPU connection sub-system, and inter-board sub-
system. As the programmable center of the entire ONetCard
developing board, the Xilinx Kintex7-325T FPGA provides

2496 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 35, NO. 11, NOVEMBER 2017

Fig. 4. Performance of HYPER compared with pure software implementation with/without DPDK on forwarding latency, jitter and throughput. The marked
line on each latency bar represents the maximum and minimum latency in that condition.

over 326 thousand logic cells. The TCAM resource on the
board is simulated by Look Up Tables (LUTs) based on
RAM on the ONetCard platform. ONetCard is equipped with
richer resource than NetFPGA [25], which motivates us to use
ONetCard as our hardware platform. On the ONetCard hard-
ware platform, we implemented Stateful Data Plane Abstrac-
tion (SDPA) [20], an enhanced OpenFlow data plane that is
simple yet powerful enough to support a variety of network
functions. We extended SDPA to expose control interfaces to
the HYPER mediator.

We implemented both hardware and software versions of
several VNFs including NAT, stateful firewall, and elephant
flow detection, and a software version of DPI. NAT monitors
flow states to allocate an entry when a new connection starts
and to deallocate it when it ends. A stateful firewall keeps
tracking the states of network connections and determines
packet handling according to associated state information [26].
We issued 100 static flow filtering rules to the stateful firewall.
Elephant flow detection preserves counters for each flow, and
alerts to the VNFM when any counter exceeds a certain
threshold. For DPI, we assigned 100 regular expressions as
patterns to match on packet payloads. The DPI alerts the
VNFM when any specific pattern is matched.

We implemented VNFMs, HYPER mediator, and orches-
trator based on OpenStack (Newton version) and Flood-
light [27]. OpenStack serves as S-VNFM since it can create,
start or terminate S-VNFs, and monitor resource usage of
each instance. We extended Floodlight with an H-VNFM
module. HYPER mediator is written as a module application in

Floodlight (about 2.3K LoC), including the performance-aware
VNF placement algorithm. We implemented the orchestrator
as another module application in Floodlight and implemented
an SLA-aware service chaining algorithm inside the orchestra-
tor (about 1.5K LoC). For packet switching between hardware
and software devices, we used Open vSwitch (OVS) [28].
We configured the forwarding rules in OVS to ensure the
reachability between VNFs.

VII. EVALUATION

To evaluate HYPER, we built a general hardware infrastruc-
ture based on ONetCard with two 10G NICs. We implemented
software VNFs in Dell PowerEdge R730 servers with 40 Intel
Xeon CPU (3.00GHZ), 256G memory, and two 10 Giga-
bit/s NIC managed by OpenStack. We constructed HYPER
infrastructure based on two pieces of ONetCard boards and
two commodity servers. We used Ixia tester to generate packets
and measure the latency, jitter, and throughput.

A. Performance of HYPER service chain

We evaluated HYPER performance of a single VNF, a pure
hardware service chain, and a hybrid service chain compared
with the traditional software implementation based on VMs
with or without DPDK enhancement.

1) Hardware Implementation v.s. Software Implementation
of the Same VNF: To compare the performance of software
and hardware implementations of the same VNF, we run a
hardware stateful firewall instance and a software one. We used

SUN et al.: HYPER: HYBRID HIGH-PERFORMANCE FRAMEWORK FOR NFV 2497

Ixia tester to generate TCP packets of fixed sizes, and sent
the same traffic to the two instances. Results in Fig. 4(a)
shows that the processing latency of unoptimized software
could be 119× to 154× higher than that of hardware, while
DPDK enhanced software still suffers an average of 5.4×
higher latency than hardware. The throughput of unoptimized
software is 91% lower than hardware, while DPDK enhanced
software could achieve as high throughput as hardware. The
latency jitter of DPDK is lower than bare software but is still
high compared with stable hardware. The huge performance
gap demonstrates the benefit of integrating hardware into the
NFV to achieve high performance.

2) Hardware Chain v.s. Software Chain: We implemented
stateful firewall, NAT, and elephant flow detection on hard-
ware, and compared the performance of this hardware chain
with a software chain composed of the same sequence of VNFs
with or without DPDK enhancement. As shown in Fig. 4(b),
the hardware chain outperforms the software chain without
DPDK on forwarding latency, latency jitter and throughput.
The DPDK enhanced software service chain can achieve
almost the same throughput performance as hardware. How-
ever, its latency is still much higher than hardware and latency
jitter remains significant, which could be unacceptable for
some latency-sensitive applications.

3) Hybrid Chain v.s. Software Chain: We further evaluated
HYPER through forming a hybrid chain composed of both
hardware and software VNF instances. We implemented state-
ful firewall, NAT, and elephant flow detection on hardware, and
DPI on software with or without DPDK, and compare their
performance with a pure DPDK implementation. Experimental
results are shown in Fig. 4(c). A hybrid service chain com-
posed of hardware and DPDK enhanced software outperforms
the pure DPDK solution on both processing latency (with a
decrease of 40% to 67%) and latency jitter. The results further
demonstrate the forwarding latency performance is boosted by
integrating hardware into the NFV network.

B. Efficiency of H-VNF Deployment

To evaluate the efficiency of VNF deployment, we deployed
a hardware instance of stateful firewall VNF. During ini-
tialization, the mediator installs the processing logic and
relevant table entries into the hardware instance through
deploy_instance and configure_instance control
interfaces. We designed 16 table entries that records the
state transition rules and actions under different TCP states.
According to the statistics, a hardware instance of our stateful
firewall can be quickly deployed within 6.1ms by installing
the configurations (i.e. 16 table entries) into the hardware,
demonstrating the flexibility and efficiency of the deployment
of hardware instances, which could happen frequently in
dynamic NFV networks. This further proves the feasibility of
integrating hardware into NFV while maintaining flexibility.

C. Performance of H-VNF Migration

The integration of hardware infrastructure in HYPER cre-
ates the necessity of H-VNF migration, which is implemented
by transferring all table entries from the old instance to the

new one in SDPA. To evaluate the migration performance,
we deployed two hardware stateful firewall instances and
issued commands to the mediator to migrate states in one
instance to the other one. Here states refer to flow-level TCP
states in stateful firewalls. Results show the mediator can
migrate approximately 9, 000 flows per second. Therefore,
regardless of the time for new instance deployment, a instance
containing 30,000 state records can be migrated to the new
instance in 3.3s, which is fast and can adapt to network
dynamics.

VNF migration is a relatively common phenomenon in
a NFV-based network. Thus, we measured the extra traffic
introduced by VNF migration to prove that HYPER can
meet such frequent dynamics. For a stateful firewall, it takes
31 bytes to store a flow and 1 byte to store the TCP state of
this flow. Thus, it takes totally 32 bytes to represent a flow and
its state in the table. To migrate 100 thousand table entries,
it introduces a total of 3.2 MB extra traffic to the network,
which is rather trivial and acceptable.

D. Performance of VNF Placement Algorithm

In order to demonstrate the benefit of performance-aware
VNF placement algorithm, we compared it with a strawman
method that uses First-Fit Decrease Algorithm (FFD). FFD is
a straightforward greedy approximation algorithm. For each
instance, we enhance FFD to place the instance in the first
node that can accommodate the instance, with respect to
both performance and resource, which already is an extension
compared with traditional resource-only placement. If no node
is found, FFD opens a new node and puts the instance
within the new node. As different hardware devices vary in
capacity, performance and cost, we assume that all hardware
devices share the same parameters. We compared the two
algorithms using the following metric: the number of occupied
nodes when accommodating the same set of VNF instances.
As shown in Figure. 5, our algorithm saves approximately 5%
devices compared with the FFD algorithm. In a large NFV
network that runs hundreds of instances [29], the performance-
aware VNF placement algorithm could save a large number
of devices, and as a result save CAPEX.

E. Performance of Service Chaining Algorithm

We implemented 20 VNF instances in the network. Since
currently there are no service chaining algorithms designed
to meet tenant performance requirements, we implemented
a strawman method of only taking into account tenants’
function requirements and device resource constraints, like
an algorithm introduced in Stratos [13]. Note that to mea-
sure the performance of the algorithm, we assume the VNF
can be deployed immediately when the algorithm issues the
deployment requests. We generated 10,000 random SLAs of
functions, forwarding latency and throughput. The average
calculation time of SLA-aware algorithm is 1.2ms, while
the strawman solution achieves the average time of 1.0ms.
The increase of calculation latency is incurred by fulfilling
performance requirements. However, the increased calculation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

