
HyperGen: High-Performance Flexible Packet Generator Using
Programmable Switching ASIC

Zhaowei Xi, Yu Zhou, Dai Zhang, Jinqiu Wang, Sun Chen, Yangyang Wang, Xinrui Li,
HaoMing Wang, Jianping Wu∗

Tsinghua University

CCS CONCEPTS
• Networks → Programmable networks;

KEYWORDS
Programmable Switching ASIC, P4, Packet Generator
ACM Reference format:
Zhaowei Xi, Yu Zhou, Dai Zhang, Jinqiu Wang, Sun Chen, Yangyang Wang,
Xinrui Li, HaoMing Wang, Jianping Wu. 2019. HyperGen: High-Performance
Flexible Packet Generator Using Programmable Switching ASIC . In Pro-
ceedings of SIGCOMM ’19: ACM SIGCOMM 2019 Conference, Beijing, China,
August 19–23, 2019 (SIGCOMM ’19), 3 pages. https://doi.org/10.1145/3342280.
3342301

1 INTRODUCTION
Packet generators are vital in network researches and network
operations. For network researchers, packet generators serve as
essential tools to test the performance of researching prototypes.
Network operators can also use packet generators to produce test
tra�c for latency measurement and failure troubleshooting [6].
Meanwhile, the development of today’s network raises demands
on packet generators from two perspectives. One is the ability of
high performance tra�c generation to meet the increasing network
bandwidth (from 10GbE to 100GbE), the other is the ability of
�exible packet customization with given properties to meet the
constant appearance of new protocols and functions.

Existing packet generators can be categorized into hardware
approaches and software approaches. Commodity packet genera-
tors based on proprietary hardware can achieve high rate packet
generation up to above 1Tbps per device. Nevertheless, hardware
packet generators [1] have limited �exibility. For instance, it is hard
for users to customize proprietary hardware to test new protocols
or functions. Besides, hardware packet generators are typically ex-
pensive, and a two 10GbE port packet generation module can cost
as much as $25,000 [2]. Software approaches [5], on the contrary,
enable users to customize packet generation logic, yielding high
�exibility. However, software approaches have to make an undesir-
able trade-o� between performance and cost. A 8-core commodity
server can only achieve less than 100Gbps [5]. If operators have
∗This work is supported by National Key R&D Program of China (2017YFB0801701)
and the National Science Foundation of China (No.61872426).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM ’19, Beijing, China
ACM ISBN 978-1-4503-6886-5/19/08. . . $15.00
https://doi.org/10.1145/3342280.3342301

Table 1: Comparison of current approaches.

Metrics (1Tbps) Device Required Flexibility Cost

Hardware 1 limited $100,000
Software ≈ 10 high $30,000

HyperGen 1 high $3,000

higher requirements on generation rates, more servers are needed,
which makes the cost rise rapidly.

Motivated by the limitations of existing approaches, we present
HyperGen, a high-performance, �exible, and low-cost packet gener-
ator using programmable switching ASIC in this paper. HyperGen
can produce above 1Tbps tra�c, and supports rate control with
high accuracy and high precision. Users can �exibly recon�gure
HyperGen to execute various tasks like throughput testing, latency
measurement, denial-of-service attack emulation and so on. Hyper-
Gen can be implemented in a single programmable switch whose
cost per Tbps is much lower than the proprietary hardware and
mid-range server. Table 1 summarizes the comparison between
HyperGen and existing approaches.

The design of HyperGen is non-trivial, and the main challenge
is that there is no straight way to generate high rate, task-speci�c
tra�c in programmable switching ASICs that are limited in pro-
grammablity and resources. We solve the challenge from two per-
spectives. Firstly, we present template-based packet generation
and take advantage of switch CPU to improve the �exibility of the
switching ASIC. More concretely, we use switch CPU to generate
the control logic and template packets with prede�ned properties
(e.g., packet size and payload), which are hard for the switching
ASIC to customize. Secondly, we present a new pipeline design to
improve the capacity of packet generation in the switching ASIC.
The pipeline performs a series of operations sequentially includ-
ing acceleration, replication and edition on template packets to
generate testing packets for various tasks.

2 DESIGN
Figures 1 shows the architecture overview of HyperGen. The work-
�ow can be described into two steps:
(1) Compiling tasks to generate testing packets. HyperGen
compiles testing tasks into three elements: switch con�gurations
(e.g., port settings and table entries), template packets, and a P4[4]
program. It is hard for the switching ASIC to customize some prop-
erties (e.g., packet size and payload). Therefore, instead of directly
generating packets in the switching ASIC, we present template-
based packet generation that generate template packets with pre-
de�ned properties in switch CPU, and forward template packets to
the switching ASIC for further processing. The P4 program de�nes
the packet generation logic in the switching ASIC, which can be

SIGCOMM ’19, August 19–23, 2019, Beijing, China Z. Xi et al.

DUT

up to
100Gbps
per link

…

Packet Generation Pipeline

Compile Collect

P4 programs, configurations,
template packets

Testing statistics

Switch CPU

Switching ASIC Analyze
Task-oriented data

Testing
Task 1

Testing
Task 2

Testing
Task N

…

(1) (2)

Figure 1: Architecture overview of HyperGen.

Design: Overview

Accelerator
Switch

CPU

PCIe

… Editor …

Template packets in <10Mbps Template packets in 100Gbps

Generated packets identical to
template packets in given rate

Generated packets with configured
properties in given rate

R
e
p
lic
at
o
r

Figure 2: Design of Packet Generation Pipeline.

described as the packet generation pipeline. §2.1 presents the design
of the pipeline.
(2) Testing statistics analysis and collection. HyperGen can
analyze and record task-oriented data while generating packets and
receiving packets from devices under test (DUT). Recorded data
can be per-packet data like a particular �eld value, or statistical
properties like packet count, throughput, delay and so on. Switch
CPU could attain aforementioned data via pulling from data plane
counters or receiving digests pushed by the switching ASIC. Then,
switch CPU will feed back testing statistics to testing tasks.

2.1 Packet Generation Pipeline
Packet generation pipeline consists of three components that exe-
cute operations sequentially on template packets. Figure 2 shows
the pipeline design. We will present the accelerator and replicator
in detail in the following parts, since the editor’s main function
is to modify generated packets from replicator to produce spe-
ci�c tra�c(e.g., choosing forwarding port, using speci�c �elds for
state storage), and all operations needed are well supported by
P4-programmable hardware.
Accelerator. Using the accelerator, we can accelerate template
packets from switch CPU to 100GbE full line rate in negligible time.
The accelerator forwards template packets into a loop via recircula-
tion, which is a general primitive supported by P4-programmable
hardware. Our experiments testify that To�no [3] can recirculate
packets at a speed of no less than 100Gbps, and round trip time of 64-
byte template packets is about 600ns, which means the maxmium
number of template packets that one loop-back port can accelerate
sequentially is nearly one hundred and increasing loop-back ports
linearly improves the maxmium number. Through recirculation, the
accelerator act as a stable high rate packet source for the replicator.
Replicator. Taking the looping template packets in the accelerator
as input, the replicator performs conditional packet replication at
given rates. The replicator implements rate control via adjusting

6 4 9 6 1 2 8 1 6 0 1 9 2 2 2 4 2 5 60

5 0

1 0 0

1 5 0

Th
rou

gh
pu

t (M
pp

s)

P a c k e t S i z e (b y t e s)

 H G - 1 0 0 G b p s
 H G - 4 0 G b p s
 M G - 4 0 G b p s - 1 C o r e
 M G - 4 0 G b p s - 2 C o r e s

(a) Single-port rate

6 4 9 6 1 2 8 1 6 0 1 9 2 2 2 4 2 5 60
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0

Th
rou

gh
pu

t (M
pp

s)

P a c k e t S i z e (b y t e s)

 H G - 2 P o r t s M G - 2 P o r t s
 H G - 3 P o r t s M G - 4 o r t s
 H G - 4 P o r t s M G - 8 P o r t s

(b) Multi-port rate

Figure 3: Packet generation rate in Mpps.

1 0 1 0 0 1 0 0 0 1 0 0 0 0
0 . 0

0 . 1

0 . 2

0 . 3

Fre
qu

enc
y

I n t e r - d e p a r t u r e T i m e (n s)

H G : 0 . 1 M p p s 1 M p p s 1 0 M p p s
M G : 0 . 1 M p p s 1 M p p s 1 0 M p p s

(a) Inter-departure time distribution

6 4 1 2 8 2 5 6 5 1 2 1 0 2 4 1 2 8 00

5 0 0

1 0 0 0

1 5 0 0

Int
er-

dep
art

ure
 Ti

me
 (n

s)

P a c k e t S i z e (b y t e s)

 H G M e a n M G M e a n
 H G R M S E M G R M S E

0
1 0 0
2 0 0
3 0 0
4 0 0

RM
SE

 (n
s)

(b) Precision

Figure 4: Accuracy and precision comparison.

inter-departure time. More concretely, the replicator maintains a
nanosecond-level periodic timer and performs replication as soon
as the timer expires. Through changing the timer threshold, the
replicator manages to adjust inter-departure time of replication.
The replicator implements replication on template packets through
multicast, which is a general primitive supported by switching ASIC
and can replicate packets to multiple ports simultaneously.

3 EVALUATION
We implement a prototype of HyperGen (HG) on Wedge 100BF32X
equipped with To�no and 32 100GbE ports. We use 1 port for recir-
culation and 4 ports for multicasting in our testbed for the considera-
tion of reserving ports for other use in practical circumstance. More
ports for recirculation increases the maxmium supported number of
template packets and more ports for multicasting guarantee higher
performance. We use a server with 64GB RAM and 8 2.10GHz CPU
cores to run MoonGen (MG) [5] as the countermeasure. We evaluate
HyperGen with the following two objectives.
Packet generation rate. Figure 3 shows the experiment results.
We compare HyperGen and MoonGen’s rate under di�erent packet
sizes using single-port (Figure 3(a)) and muti-port con�gurations
(Figure 3(b)). As the results show, in our testbed HyperGen can
achieve 4-port 100GbE full line rate, which is higher than MoonGen.
Accuracy and precision. We con�gure HyperGen and MoonGen
to generate 64-byte packets in di�erent rates. HyperGen keeps
accurate at all rates, while MoonGen becomes inaccurate when
rate grows high (Figure 4(a)). Besides, we test the average inter-
departure time of di�erent packet sizes at a rate of 1Mpps. Hyper-
Gen has better accuracy when packet size is relatively small, and
has much lower Root Mean Squared Error(RMSE) (Figure 4(b)).

4 FUTUREWORK
Our future work will focus on further analyzing generated packets
and building a general network testing system. Besides, developing
a convenient way to specify network testing intents of operators is
another important work we keep studying.

HyperGen SIGCOMM ’19, August 19–23, 2019, Beijing, China

REFERENCES
[1] A Keysight Business. 2019. IXIA test modules. Website. (2019). https://www.

ixiacom.com/products.
[2] Gianni Antichi, Muhammad Shahbaz, Yilong Geng, Noa Zilberman, Adam Cov-

ington, Marc Bruyere, Nick McKeown, Nick Feamster, Bob Felderman, Michaela
Blott, and others. 2014. OSNT: Open source network tester. IEEE Network
Magazine 28, 5 (2014), 6–12.

[3] Barefoot Networks. 2019. Barefoot To�no Switch. Website. (2019). https:
//barefootnetworks.com/technology/.

[4] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
others. 2014. P4: Programming protocol-independent packet processors. ACM
SIGCOMM Computer Communication Review 44, 3 (2014), 87–95.

[5] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and
Georg Carle. 2015. Moongen: A scriptable high-speed packet generator. In
Proceedings of the 2015 Internet Measurement Conference. ACM, 275–287.

[6] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray Huang, Dave
Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, and others. 2015. Pingmesh:
A large-scale system for data center network latency measurement and analysis.
ACM SIGCOMM Computer Communication Review 45, 4 (2015), 139–152.

https://www.ixiacom.com/products
https://www.ixiacom.com/products
https://barefootnetworks.com/technology/
https://barefootnetworks.com/technology/

	1 Introduction
	2 Design
	2.1 Packet Generation Pipeline

	3 Evaluation
	4 Future Work
	References

