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1 INTRODUCTION
Software based in-memory key-value store (KVS) has be-
come a critical infrastructure that provides services for many
systems in data center networks. The performance of KVS is
considered as a key factor that directly determines the system
efficiency [4].In a server with multi-core CPUs, traditional
KVS performs hashing on the requests to evenly distribute
workload to multiple cores. Even if multiple requests are
querying the same key, request-based hashing may still dis-
tribute them to different cores. Therefore, synchronization
mechanisms such as mutexes and version-based locking are
adopted to ensure data consistency across CPU cores, which
incurs serious performance overhead due to contention and
frequent cache invalidity [5].
To address this challenge, some researches [5] partition

KVS requests based on the key they are visiting. By allocating
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Figure 1: KeySched design overview
requests targeting at the same key to the same CPU core,
the need for synchronization is eliminated and therefore the
performance is significantly improved. However, real KVS
workload often follows Zipfian distribution [1], in which a
few keys are extremely popular. The skewed workload results
in imbalanced workload among multiple cores. Hot cores
in this situation suffer from serious throughput degradation
(up to 30%), long tail latency and low energy efficiency [4].

Unfortunately, current researches cannot effectively ad-
dress this load imbalance problem. NetCache [2] buffers hot
data in switches for read requests to relieve the workload of
servers but cannot deal with write-intensive workload, which
is common in distributed computation such as graph com-
putation. FlexNIC [3] supports dynamic assignment of key
groups to different cores but lacks an effective mechanism
to split key groups to CPU cores to ensure balancing.

To address this problem, we propose KeySched, a timeslot-
based hot key scheduling framework for KVS that targets at
achieving relatively balanced core workload while maintaining
key-based partition. We first measure the hottest and average
core workload of a KVS with key-based partition to motivate
KeySched. Then we propose our key observation from KVS
workload that load imbalance is caused by very few extremely
popular keys (i.e. hot keys). Therefore, we design theKeySched
framework which innovatively proposes a timeslot-based hot
key scheduling scheme while maintaining key-based parti-
tion. We have implemented KeySched on Smart Network
Interface Card (SmartNIC). Preliminary evaluation shows
that KeySched could balance the core workload in KVS with
little performance overhead.

2 KEYSCHED DESIGN
Motivation:Max-Ave-Ratiomeasurement.Max-Ave-Ratio
is the ratio of the workload of the hottest CPU core and the
average workload of all cores, which is used as a key bench-
mark to assess the load imbalance extent of KVS [4]. To
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obtain this ratio, we build a KVS platform with key-based
partition according to [5]. The platform consists of two Dell
R730 servers, each equipped with two Intel Xeon E5-2680 v4
CPUs (36 logical cores @2.30 GHz) and runs Ubuntu with
Linux kernel 4.5.0. One server carries an Agilio CX 2x10GbE
SmartNIC to perform key-based hashing to split workload
across multiple cores. The other server equipped with a dual-
port Intel X520 10G NIC generates KVS requests that follow
the Zipfian distribution [1].We vary the number of cores used
by KVS and measure the load of each core. Experimental
results show that with the increase of the number of cores
(from 8 to 64), the Max-Ave-Ratio increases from 1.32 to 5.61,
which represents very serious load imbalance [4] that could
result in significant performance degradation in KVS.
Observation: very few hot keys cause imbalance. Now
we try to understand the load imbalance problem based on
the measurement of KVS workload that follows the Zipfian
distribution.We observe that the frequency of the hottest key
takes 6.6% of the entire workload. Even if we allocate a single
core for this key and evenly distribute the rest workload to
the remaining 63 cores, the Max-Ave-Ratio still reaches as
high as 4.45. Highly skewed workload in KVS results in the
situation that very few hot keys could introduce serious load
imbalance and compromise performance.
Key novelty: timeslot-based hot key scheduling. Based
on our observation, keeping the hot keys at the same cores
all the time is the root cause of load imbalance. A naive
solution is to evenly split the workload of hot keys to multi-
ple cores. However, doing this violates key-based workload
partition and requires costly synchronization mechanisms
across cores. To address this challenge, we innovatively pro-
pose timeslot-based hot key scheduling for load balancing
with little overhead. We slice time into timeslots (1ms in
our implementation). In each timeslot, we detect hot keys
and schedule them to the core with the least load in a few
recent timeslots. Therefore, hot keys are dynamically placed
on different cores. Only a small portion of requests for hot
keys will be processed in each core, which largely mitigates
imbalance. However, timeslot-based scheduling suffers from
a cache miss when scheduling a hot key. Nevertheless, ex-
periments in §3 show that cache misses happen extremely
rarely with at most 32 hot keys scheduled.
KeySched Design. Finally, as shown in Figure 1, we present
the design of KeySched including three functional modules.
(1) Key Frequency Monitor: To measure key frequency with
little overhead, we adopt the Count-min Sketch [6] that is
easy to implement in SmartNIC with high resource efficiency.
Count-min sketch utilizes multiple hash functions to map a
request to different counters, and picks the smallest counter
value as the estimated key frequency. We then attach the key
frequency to the request and deliver it to the Key Scheduler.
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Figure 2: Key Scheduler workflow
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Figure 3: Scheduling effect and overhead of KeySched

We clear counters at the end of each timeslot to prepare the
key frequency counting for the next timeslot.
(2) Key Scheduler: We present the workflow of Key Scheduler
in Figure 2. This module first detects hot keys based on the
key frequency attached in the request. If the frequency is
smaller than threshold, we consider the key as a small key
and follows traditional key-based hashing for core assign-
ment. Otherwise, the key is considered as a hot key and will
be scheduled to the least loaded core. We store this key-core
mapping in a Mapping Table. For subsequent requests for
this key in this timeslot, the Key Scheduler will simply look
up the Mapping Table and steer the request to the same core.
(3) Core Load Monitor: This module maintains the load of
each core in a few (100 in our implementation) recent times-
lots. The Key Scheduler will query the Core Load Monitor
and select the least loaded core to carry the detected hot key.

3 IMPLEMENTATION AND EVALUATION
We have implemented KeySched on the platform introduced
in §2. We evaluate KeySched and compare it with traditional
key-based partition. We vary the number of CPU cores from
8 to 64 for the KVS, and the threshold in Key Scheduler from
256 to 32. We use the server that generates KVS requests to
receive responses and measure the Round-Trip-Time (RTT).
As shown in Figure 3(a), with the increase of the number
of cores, the load imbalance in traditional key-based parti-
tion becomes more serious. However, KeySched can achieve
relatively balanced load regardless of the core number. More-
over, if we decrease the threshold, KeySched could result
in a more balanced load as more hot keys will be detected
and scheduled, which is illustrated in the bottom half of Fig-
ure 3(b). However, with the decrease of the threshold, key
scheduling becomes more frequent and introduces larger
latency overhead. Nevertheless, as shown in the top half
of Figure 3(b), the latency penalty is 3 µs to 5µs , which is
acceptable compared with the baseline.
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