
LiveNet: A Low-Latency Video Transport Network for
Large-Scale Live Streaming

Jinyang Li† § ‡ , Zhenyu Li† ‡, Ri Lu§, Kai Xiao§, Songlin Li§, Jufeng Chen§, Jingyu Yang§,

Chunli Zong§, Aiyun Chen§, Qinghua Wu† ‡, Chen Sun§, Gareth Tyson∗, Hongqiang Harry Liu§

†Institute of Computing Technology, Chinese Academy of Sciences §Alibaba Group
‡University of Chinese Academy of Sciences ∗Hong Kong University of Science and Technology (GZ)

ABSTRACT

Low-latency live streaming has imposed stringent latency require-
ments on video transport networks. In this paper, we report on the
design and operation of the Alibaba low-latency video transport
network, LiveNet. LiveNet builds on a flat CDN overlay with a
centralized controller for global optimization. As part of this, we
present our design of the global routing computation and path as-
signment, as well as our fast data transmission architecture with
fine-grained control of video frames. The performance results ob-
tained from three years of operation demonstrate the effectiveness
of LiveNet in improving CDN performance and QoE metrics. Com-
pared with our prior state-of-the-art hierarchical CDN deployment,
LiveNet halves the CDN delay and ensures 98% of views do not
experience stalls and that 95% can start playback within 1 second.
We further report our experiences of running LiveNet over the
last 3 years.

CCS CONCEPTS

• Networks → Overlay and other logical network structures;
Network control algorithms;

KEYWORDS

CDN; Low latency transmission; Live streaming

ACM Reference Format:

Jinyang Li† § ‡ , Zhenyu Li† ‡, Ri Lu§, Kai Xiao§, Songlin Li§, Jufeng Chen§,
Jingyu Yang§, Chunli Zong§, Aiyun Chen§, Qinghua Wu† ‡, Chen Sun§,
Gareth Tyson∗, Hongqiang Harry Liu§. 2022. LiveNet: A Low-Latency
Video Transport Network for Large-Scale Live Streaming. In ACM SIG-
COMM 2022 Conference (SIGCOMM ’22), August 22–26, 2022, Amsterdam,
Netherlands. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3544216.3544236

Co-corresponding authors: Zhenyu Li, Ri Lu.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9420-8/22/08.
https://doi.org/10.1145/3544216.3544236

1 INTRODUCTION

With the global pandemic, live streaming has become a daily neces-
sity. As new Low-Latency Live Streaming use cases emerge (e.g.,
e-commerce, work, entertainment gaming), the number of users
has grown remarkably [2]. This has been accompanied by grow-
ing user expectations, challenging the flexibility and scalability of
underlying transmission systems.

As one of the world’s primary CDN providers, Alibaba’s CDN [5]
hosts many live streaming applications (e.g., Taobao Live [7] for e-
commerce). For several years, these applications have largely been
underpinned by Alibaba’s first-generation hierarchical video trans-
port network, where the stream is passed to a central system for me-
dia processing and then distributed to edge nodes that subsequently
connect to the viewers. Often, these CDN nodes form a (multi-layer)
overlay tree, with leaf nodes serving clients and internal nodes
disseminating content to the leaves, e.g., using application-layer
multicast [11] and caching [12, 38, 39]. This, however, places signif-
icant pressure on the central processing system and internal nodes,
which must scale with the number of streams. This can become par-
ticularly challenging for live streams with strict delay constraints
due to the need for streams to traverse the depth of the delivery tree
twice. Indeed, as we show in §2, the tree-structured overlay falls
short of the stringent requirements on CDN delay that is imposed
by low-latency live streaming services.

In this paper, we report our work in building and operating Al-
ibaba Cloud’s live streaming service, LiveNet. For several years,
this has been built upon the hierarchical CDN model described
above. Although this system has helped us successfully host several
large-scale live events (such as the Double 11 Shopping Festival
[6] and the FIFA World Cup [1]), the complexity of scaling a rigid
hierarchical model has proven difficult from an operational and
cost perspective. For example, we have found that many of our
edge (leaf) nodes remain underutilized, while our root nodes are
heavily overloaded. Further, we have observed that user demand
can vary on a per-second basis, making fine-grained resource alloca-
tion important, but challenging without the ability to dynamically
restructure the overlay (tree) topology to avoid hot spots. More
problematic still, we often have both latency tolerant and intoler-
ant streams following identical paths through our delivery trees,
despite their differing needs. In sum, the rigidity of a hierarchical
model is no longer sufficient to support our diverse application
requirements.

https://doi.org/10.1145/3544216.3544236
https://doi.org/10.1145/3544216.3544236
https://doi.org/10.1145/3544216.3544236

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Li et al.

With the above in mind, three years ago we set out to re-architect
our live video streaming platform. Here, we present LiveNet —
Alibaba’s centrally coordinated low-latency video network based
on a flat CDN structure. We focus on introducing three main design
choices that build on our prior operational experience.

First, to move away from rigidly fixed overlay topologies or
pre-assigned roles for nodes (§2), LiveNet is built upon a flat CDN
similar to [29, 37]. At its core is a set of flexible nodes (each a cluster
of machines) that can serve several dynamically allocated roles:
producers (which receive and process streams from broadcasters),
consumers (which receive requests from clients and implement fine-
control on streams), and relays (which interconnect the consumers
and producers in an arbitrary overlay topology, offering services
such as forwarding and caching). By decoupling the individual
nodes from any particular role, it becomes possible to compose the
most appropriate overlay topology on a per-application basis and
distribute the load evenly, avoiding prior central hot spots.

This flexibility naturally comes with a number of resource allo-
cation and management challenges, particularly when operating
at scale. Thus, our second design choice borrows from Software
Defined Networking (§4): Rather than embedding control logic in
each node, we design a logically centralized CDN controller (the
Streaming Brain) that is responsible for designating roles to nodes,
computing overlay paths between them, and selecting paths for con-
sumer nodes. By logically centralizing management functionality,
we can easily experiment with new topologies and configurations
to bypass problematic nodes or implement per-application policies.

Whereas the above architecture allows us to flexibly compose
new overlay topologies with embedded services at each hop (e.g.,
caching, transcoding), it also introduces challenging overheads.
This is because packets must traverse multiple software stacks,
introducing undesirable delays for our live streaming customers.
To alleviate this, our third design choice uses a novel stream for-
warding mechanism with the goal of minimizing end-to-end delay
(§5). This is based on two parallel packet processing paths within
each node – a fast & slow path, implementing different functions
provided by different protocol stack layers. In this model, upon
receiving a (RTP) packet, each node immediately forwards it to
the next hop in the overlay, without performing traditional control
functions such as loss detection or congestion control (the fast path).
In parallel, a copy of the packet is replicated onto the,slow path1

which introduces congestion control and loss recovery in case the
fast path experiences a loss, and also implements GoP (Group of
Pictures) caching on each node. This optimizes LiveNet for delay
— the fast path delivers packets as quickly as possible, whereas the
slow path offers reliable transmission and content caching that is
essential for fast startup and recovery.

Our deployment and evaluation confirm the efficacy of these de-
sign choices (§6). LiveNet has acted as the foundation of Alibaba’s
low-latency streaming technology stack for 3 years. Compared with
our prior hierarchical CDN, LiveNet condenses the average trans-
mission path length (i.e., number of overlay hops) from 4 to 2 and
reduces the delay between the ingress and egress points of the CDN
by over 50%. It also significantly improves the user-perceivable ex-
perience: 95% of views have a startup delay of under 1s, and 98%

1This copied packet on the slow path will not be forwarded to the downstream nodes.

have no stalls. After 3 years of operation, we believe that the design
choices of LiveNet are not only feasible but also highly effective.
The design choices of LiveNet and the lessons learned (§7) can be
broadly applied to other large-scale streaming scenarios such as
video conferencing and online education.

Our main contributions are as follows:
• We present LiveNet, a low-latency video transport network

based on a flexible flat overlay topology, with centralized control
for global optimization.
• We detail some of our key solutions for supporting low-latency
live streaming, including our (i) centralized routing computa-
tion; (ii) fast path lookup and establishment; and (iii) a fast-slow
path transmission architecture with fine-grained control on
streams.
• We demonstrate the efficacy of LiveNet through Taobao Live,
which is one of the biggest players in e-commerce live streaming.
We also share our operational experiences of running LiveNet
over the last 3 years.
We emphasize that LiveNet was born out of the practical needs

identified during the operation of our previous generation video
transmission network (Hier). Some of our design choices share
similar ideas to existing work (such as flat CDN architectures [29,
37] and centralized control planes [9, 35]). That said, we present the
details of the design and implementation of a mix of both existing
and novel approaches (e.g., fast-slow path transmission systemwith
fine-grained stream control) that can be employed to minimize the
transmission delay of a large-scale commercial CDN system. More
importantly, we verify this design in a production environment and
share our experiences.

2 BACKGROUND AND MOTIVATION

2.1 Low-Latency Live Streaming

For many years, live streaming was primarily used for large event
broadcasting (e.g., the World Cup). Here, the broadcasters are often
the content providers themselves, and often it is acceptable to have
an end-to-end latency in the order of several seconds [44].

More recently, platforms have enabled individuals to “go live”,
broadcasting their camera feeds to a global audience. This kind of
live streaming is referred to as personalized live streaming and has
more stringent latency requirements (as individual broadcasters
may interact with their audience [36]). For example, as one of
the world’s largest online shopping apps, Alibaba Taobao offers
a live streaming service (Taobao Live) to any online shops that
would like to promote their products. As a live streaming service
for e-commence, Taobao Live imposes strict latency and stability
requirements as these could impact revenue. For instance, shops
that sell similar products may co-live stream, in order to attract a
larger viewership. In a co-stream, broadcasters can talk to others
(video chat) and compete with each other, trying to win shoppers.

With the above in mind, we identify 3 key system requirements
for low-latency live streaming: (i) It must offer low end-to-end la-
tency for live video delivery (∼1 second) and fast start-up (within 1
second); (ii) It must elegantly scale to tens of thousands of concur-
rent broadcasters and millions of viewers; and (iii) It must offer high

LiveNet: A Low-Latency Video Transport Network SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

Streaming Center

Stream
Mgt.

Overlay
Mgt.

Media
Processing

Global
Opt.

Clients

L2

L1

Figure 1: The system structure of Alibaba’s first-generation

hierarchical CDN (Hier).

1 2 3 4 5 6 7
Day

200

300

400

500

CD
N

pa
th

 d
el

ay
 (m

s)

LiveNet Hier

Figure 2: CDN path delay for Hier and LiveNet.

stability and deterministic performance, even during large-scale
events.

2.2 Alibaba Hierarchical CDN (Hier)

Alibaba’s first-generation video transport network follows the con-
ventional wisdom of using a hierarchical CDN [32, 44], as shown
in Figure 1.2 We refer to this as Hier. It is composed of a powerful
streaming center and geo-distributed CDN nodes, where each node
consists of a cluster of machines in Alibaba Cloud. The stream-
ing center undertakes almost all media data processing (e.g., video
transcoding) and system management (e.g., CDN node manage-
ment). While logically being centralized, it is geo-replicated in
several data centers. CDN nodes, which are organized in a two-
layer structure, are responsible for live video transport, but barely
process video content. The nodes at a higher level are equipped
with more bandwidth and storage resources. Note that, thanks to
the global coverage of Alibaba Cloud, the L1 nodes (also called
edges) are located close to end-users.

A typical live video stream in the hierarchical CDN is as follows:
the broadcaster uploads their live content to the assigned L1 node,
which then forwards the content to the streaming center via a
selected L2 node. The streaming center transcodes the content if
needed. The content is forwarded down to L2 and L1 nodes that
are connected to viewers of this stream. L2 and L1 nodes may
cache the content in the form of GoPs (Group of Pictures) to serve
requests thereafter. The transport within the CDN overlay is based
on RTMP over TCP. It is worth noting that we implemented a
centralized control to coordinately map L1 nodes to L2 nodes for
individual streams. The control is similar to VDN [35], where the

2Note that, it is still in production use at Alibaba.

Streaming Brain

Global
Discovery

Global
Routing

Path
Decision

Stream
Mgt.

Clients

Producer

Relay

Consumer

Media
processing

GoP
cache

Reliable
trans.

Stream
ctrl.

Local discovery Paths

Figure 3: The system structure of LiveNet.

control component has a global view of the CDN overlay state and
computes the map to optimize the predefined utility. By doing so,
we avoid path congestion due to static mapping of L1 and L2 nodes
and implement priority-based scheduling.

2.3 LiveNet: from Hierarchical to Flat CDN

We have operated Hier since 2016 and observed 3 important trends
that motivate us to develop LiveNet. First, we have seen ever-
increasing demands for improved user experience. For instance, we
see many “flash sale” campaigns that are launched by online shop
owners in Taobao Live. In such a campaign, limited products will
be sold at extremely low prices during the live broadcast, following
a first-come-first-serve policy. This requires sub-second end-to-end
latency, which translates to an expected CDN delay of 300-400 ms.3
However, as shown in Figure 2, the CDN path delay in Hier is ∼400
ms. As such, we cannot make the SLA guarantee of such a low CDN
delay to customers with Hier.

Second, we have seen continuous growth in the numbers of
broadcasters and viewers in live streaming applications. Neverthe-
less, the rigid tree overlay topology means that all video streams
have to go to the centralized media processing center, dramati-
cally increasing the load on non-leaf nodes, and delaying the data
delivery.

Finally, as a cloud provider, we also would like to offer a real-time
video transport network to third parties. Supporting a diversity of
use cases is therefore key to our business model, while the rigidity
of Hier’s overlay topology means that it is more difficult to handle
things like traffic prioritization.

Inspired by the flexibility and efficiency offered by flat CDN
overlays [29, 37] and centralized control [9, 33, 35, 37], we envi-
sioned a low-latency video transport network, LiveNet, that is
built upon a flat overlay network (see Figure 3). In LiveNet, each
node’s functionality as well as the overlay path between every pair
of nodes can be configured through a centralized control center,
called the Streaming Brain. To put this in context, Figure 2 plots the
3The customers that run live streaming services expect a 900-1000 ms end-to-end delay.
This can be considered the minimum requirement for interactivity. This includes a
∼300 ms playback buffer (to minimize stalls), ∼150 ms for encoding and first-mile
delay from broadcasters to the CDN, and ∼150 ms for decoding and last-mile delay
from the CDN to viewers.

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Li et al.

CDN path delay of LiveNet. The typical delay lies between 150 ms
and 250 ms. Thus, LiveNet allows us to provide video transport
services that require an expected CDN delay of 300-400 ms. The
rest of this paper details the design of LiveNet and the production
performance achieved.

3 LIVENET OVERVIEW

We first provide a high-level overview of LiveNet. Later, we detail
the centralized control plane (§4) before describing our stream
forwarding plane (§5).
Design Goals. LiveNet aims at providing persistent low-delay
(sub-second) live video delivery for large-scale concurrent broad-
casters and viewers. It also requires flexibility in supporting vari-
ous live streaming applications on one CDN overlay network.
End-to-End Workflow. End users (uploaders or viewers) are
mapped to CDN servers via DNS redirection. The CDN node that
a broadcaster connects to is called a producer node, and the CDN
node that a viewer connects to is called a consumer node. A broad-
caster uploads live content to the producer node, often using We-
bRTC, where the producer node processes the media content (e.g.,
transcoding) if needed. A consumer node will receive requests from
viewers. If it is already serving that stream and has recent video
frames cached, it will immediately respond with the content. Other-
wise, it initiates a path lookup request to the central control plane
with the stream ID as the input. The overlay path returned dictates
how the live video content can be transmitted from the producer
to the consumer nodes, potentially via intermediate nodes (which
we refer to as relays). These relays cache video content and can
be used to construct arbitrary path topologies based on diverse
constraints. Our system is separated into a centralized control and
decentralized data plane, which we briefly summarize below.
Control Plane. The centralized control plane (detailed in §4) col-
lects the overlay network states from CDN nodes to form a global
view of the overlay. Based on the global view, the controller com-
putes the best paths (in terms of delay) for every pair of overlay
nodes. The computation is naturally constrained by link capacities
and node loads. Nevertheless, both constraints vary on a small time
scale (e.g., seconds). This is because (i) live streams (i.e., channels)
come and go often; (ii) views often last a short period; and (iii)
overlay nodes may be also involved in video processing, leading to
variations in loads. Our experiences have therefore led us to avoid
a hybrid approach with centralized control and decentralized deci-
sions [23, 35] because communication between the central and local
controllers frequently becomes unaffordable. Instead, we focus the
path computation and decision-making in a centralized controller,
referred to as the Streaming Brain.
Data Plane. The data plane (detailed in §5) covers the transmission
of data via the overlay paths that connect the CDN nodes. Our
experience shows that the forwarding engine in the overlay nodes
can impact performance significantly. For example, we have found
that running a whole application stack (e.g., WebRTC) on each
overlay node introduces unacceptable processing latency for our
use cases. To address this challenge, LiveNet relies on a novel
fast-slow path forwarding mechanism. This involves two parallel
packet pipelines running on each single overlay node. First, upon

receipt of a video packet, the fast path immediately forwards it
downstream, circumventing the application stack. This means that
such packets avoid any processing tasks such as congestion control,
caching, or error detection. This is motivated by the fact that our
network backbone is nearly lossless (< 0.175% even in peak hours).

Nevertheless, loss does occur during heavy loads, and a missing
I frame severely impacts user experience. Thus, we supplement
this with a second packet pipeline that we call the slow path. This
pipeline operates a full-stack, including hop-by-hop transmission
control to enable rapid packet recovery [43]. Therefore, when the
fast path fails, consumer nodes can rapidly recover the loss. Specif-
ically, the received packet is also copied to the slow path for con-
gestion control, loss recovery, and GoP caching; nevertheless, the
copied packet will not be forwarded to the downstream nodes. We
delay providing comprehensive details until §5 but instead provide
a brief example to show the benefits. Imagine a path: 𝐴→ 𝐵 → 𝐶 .
If no packet loss occurs, fast path forwarding will suffice. However,
if 𝐵 detects a loss (via the slow path), it will NACK𝐴 for retransmis-
sion. Thus, when 𝐶 also detects the loss, the slow path may have
already recovered the packet. In parallel, the fast path will continue
to forward packets ensuring continuous delivery.

4 STREAMING BRAIN DESIGN

4.1 Overview

Taking inspiration from prior work in SDN, we rely on a logically
centralized controller, referred to as the Streaming Brain. This is
composed of four components, as shown in Figure 4. TheGlobal Dis-
covery module collects the overlay network state from CDN nodes,
providing a global view for the path computation. The Global Rout-
ing module calculates the best paths for each pair of overlay nodes
based on the global view periodically (every 10 minutes). These
are then pushed to the Path Decision module, which serves path
requests from consumer CDN nodes. This information is stored in
the Path Information Base (PIB). Note that, the PIB is also updated
by the Global Discovery module if any links or nodes become over-
loaded. Finally, when a CDN producer node receives a new stream
uploading request, it will push the stream information (e.g., stream
ID) to the Stream Management module which maintains a record
of which streams are active, stored in the Stream Information Base
(SIB).

4.2 Global Discovery Module

The Global Discovery module collects network states from overlay
nodes. Currently, we consider link latency (RTT), packet loss rate,
link utilization, and node load.4 Individual nodes report these met-
rics on a 1-minute time scale. Specifically, for a link 𝑙 that connects
two nodes 𝑖 and 𝑗 , if node 𝑖 transmits data within the last 10 min-
utes over link 𝑙 , it reports the network statistics directly from the
transport layer. Otherwise, node 𝑖 randomly selects a machine in
its cluster to actively measure the statistics of the link 𝑙 using the
UDP Ping utility to ping the node 𝑗 .5

4A node’s load is a combined metric reflecting the number of stream transmissions
going through it, the CPU and memory utilization.
5On each measure, we send only a few MSS packets.

LiveNet: A Low-Latency Video Transport Network SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

Global ViewOverload
Control

Global RoutingGlobal Discovery
Path Decision

KEY VALUE KEY VALUE
(SrcNd1, DstNd1) path1, path2, path3 +DstNd StreamID1 SrcNd1
(SrcNd1, DstNd2) path1, path2, path3 StreamID2 SrcNd2

… … … …

PIB SIB

Overload signal

CDN Nodes

Real-time
overload

alarm

Periodic
local view

report
Routing
requestPaths

KSP
Upd. Stream

Mgt.

Stream info

Upd.

Figure 4: The Streaming Brain design overview.

Note that, our experiences have shown that link utilization and
node loads may change on a relatively small time scale (e.g., sec-
onds). If a link or node is about to be overloaded, the computed paths
that involve them should potentially be invalidated. To reflect this,
overlay nodes issue reports to the Global Discovery module if the
node utilization or the utilization of their associated links reaches
a pre-defined target (default 80%). The Global Discovery module
then asks the Path Decision module to invalidate the corresponding
paths that include the overloaded links or nodes.

4.3 Global Routing Module

The Global Routing module computes the routes for each pair of
nodes every 10 minutes, with the up-to-date view of the overlay
that is provided by the Global Discovery module.
Problem Formulation. Let 𝑟 ∈ 𝑅 denote a viewing request,
𝑝𝑎𝑡ℎ(𝑟) ∈ 𝑃 denote a specific path from the producer to the con-
sumer node serving this viewing, and 𝑄 (𝑟, 𝑝) denote the expected
delay for 𝑟 when using 𝑝 (a smaller value is better). We assume
that the path selections for requests are independent, i.e., the per-
formance of transmission is not impacted by the decisions made
for other requests. Our goal is to minimize the total delay for all
requests 𝑟 ∈ 𝑅:

𝑎𝑟𝑔 min
𝑝𝑎𝑡ℎ∈𝑃𝑅

∑︁
𝑟 ∈𝑅

𝑄 (𝑟, 𝑝𝑎𝑡ℎ(𝑟)) (1)

The above optimization is subjected to 3 constraints: (i) the traffic
over a link is bounded by its bandwidth; (ii) the utilization of any
node is bounded by a pre-defined target (e.g., 80%); and (iii) the path
length should not exceed a pre-defined target (3 in our design)6.
Two-Step Solution. Considering the performance demands of path
computation and the ease of maintenance, LiveNet does not adopt
an optimization-based approach (e.g., modeling overlay routing as
a multi-commodity flow problem [9, 37]). Instead, LiveNet adopts
a heuristic solution to determine the transmission path. Specifically,
we abstract the link weights by incorporating link delay, packet
loss rate, link utilization as well as the utilization of the two end
nodes. For a link 𝐴→ 𝐵, its weight𝑊𝐴𝐵 is abstracted as:

𝑊𝐴𝐵 = (𝜌 × 2 ∗ 𝑅𝑇𝑇𝐴𝐵 + (1 − 𝜌) × 𝑅𝑇𝑇𝐴𝐵) × 𝑓 (𝑢𝐴𝐵) (2)

𝑓 (𝑢𝐴𝐵) = 1/(1 + 𝑒𝛼∗(𝛽−𝑢𝐴𝐵)) + 1 (3)
6We limit the path length to achieve low transmission delay and to reduce the number
of locations where packet loss or bandwidth variations may occur.

where 𝜌 is the packet loss rate of the link, and 𝑢𝐴𝐵 is the maximum
value from the link utilization, 𝐴’s node utilization, and 𝐵’s utiliza-
tion. The first term of Eq. 2 captures the expected link RTT, where
we assume a lost packet can be recovered in the second attempt.
Specifically, it is composed of the expected two-way delay when
the packet is lost and recovered in the next try (𝜌 × 2 ∗ 𝑅𝑇𝑇𝐴𝐵), as
well as the delay when packet experience no loss ((1− 𝜌) ×𝑅𝑇𝑇𝐴𝐵).
𝑓 (·) is a Sigmoid-like function (ranging from 1 to 2) to adjust the
weight, where 𝛼 and 𝛽 are hyper-parameters controlling the shape
of 𝑓 (·). We use 𝛼 = 0.5 and 𝛽 = 80% in our current implementation.

With the above abstracted graph, we solve the global routing
optimization problem through two steps. In the first step, we find
the 𝑘 (𝑘 = 3 in our current implementation) shortest paths between
every pair of nodes using the 𝐾 Shortest Paths (KSP) algorithm
[19]. In the second step, we filter out any links that violate our
constraints. Specifically, the paths that are longer than 3 hops or
contain overloaded links or nodes are removed. The remaining
paths are used by the Path Decision module.
Last-Resort Paths. In the case that all the computed paths be-
tween a pair of nodes violate the constraints, LiveNet provides
last-resort paths. Specifically, we maintain a small quantity of last-
resort nodes that are reserved only for last-resort paths. Any node
can reach another node through one of these last-resort nodes in
two hops. A last-resort path constitutes the producer node, a last-
resort node as the relay, and the consumer node. To offer low-delay
transmission, the last-resort nodes are located in networks that
have many peering points with other networks (e.g., Internet eX-
change Points, IXPs). In practice, around 2% of the viewing sessions
are served using last-resort paths.
Supporting Other Applications. The above routing scheme is tai-
lored for large-scale live streaming applications, especially Taobao
Live. Nevertheless, our centralized computation means that the
routing scheme or the associated constraints can be arbitrarily
updated without impacting the CDN nodes. For instance, to sup-
port video telephony that requires lower delay but with a much
smaller number of participants, the routing scheme can preferen-
tially choose the CDN nodes that have good network connectivity
and low loads as MCUs (Multipoint Conferencing Units). Detailed
routing schemes and constraints for other applications are out of
the scope of this paper.

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Li et al.

Algorithm 1: Viewing request processing on consumer
nodes
input :Stream ID: 𝑠𝑖𝑑 , Consumer: 𝐷𝑠𝑡𝑁𝑑 , and Client ID:

𝐶𝑙𝑖𝑒𝑛𝑡𝐼𝐷 contained in the viewing request
1 if 𝑠𝑖𝑑 ∈ 𝑆𝑡𝑟𝑒𝑎𝑚𝐹𝐼𝐵 then

2 𝑆𝑡𝑟𝑒𝑎𝑚𝐹𝐼𝐵 [𝑠𝑖𝑑] .𝑎𝑝𝑝𝑒𝑛𝑑 (𝐶𝑙𝑖𝑒𝑛𝑡𝐼𝐷);
3 return 𝐺𝑜𝑃𝐶𝑎𝑐ℎ𝑒 [𝑠𝑖𝑑];
4 else

5 𝑝𝑎𝑡ℎ𝑠 ← GetPath(𝑠𝑖𝑑 , 𝐷𝑠𝑡𝑁𝑑);
6 𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ ← 𝑝𝑎𝑡ℎ𝑠 [0];
7 𝐵𝑎𝑐𝑘𝑢𝑝𝑃𝑎𝑡ℎ𝑠 ← 𝑝𝑎𝑡ℎ𝑠 [1 :];
8 𝑠𝑡𝑟𝑒𝑎𝑚 ← EstablishPath(𝑠𝑖𝑑 , 𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ);
9 𝐺𝑜𝑃𝐶𝑎𝑐ℎ𝑒 [𝑠𝑖𝑑] = 𝑠𝑡𝑟𝑒𝑎𝑚;

10 end

11 Function GetPath(𝑠𝑖𝑑 , 𝐷𝑠𝑡𝑁𝑑):
// Executed at the Path Decision module.

12 𝑆𝑟𝑐𝑁𝑑 ← 𝑆𝐼𝐵 [𝑠𝑖𝑑];
13 𝑝𝑎𝑡ℎ𝑠 ← 𝑃𝐼𝐵 [𝑆𝑟𝑐𝑁𝑑] [𝐷𝑠𝑡𝑁𝑑];
14 for 𝑝 ∈ 𝑝𝑎𝑡ℎ𝑠 do

// Delete paths with overloaded

nodes/links.

15 if IsInvalid(p) == 𝑇𝑟𝑢𝑒 then
16 𝑝𝑎𝑡ℎ𝑠 .del(𝑝);
17 end

18 end

19 return paths;
20 End Function

4.4 Path Decision Module

The Path Decision Module is responsible for selecting an overlay
path for a given stream. Algorithm 1 elaborates how a consumer
node responds to a viewing request with the Path Decision module.
Information Bases. The Path Decisionmodule maintains a Stream
Information Base (SIB) and a Path Information Base (PIB). The SIB
stores for each live stream (indexed by a unique stream ID) its
producer node in a hash table; it is updated when new streams are
initialized or existing ones finish. The PIB, which is also a hash
table, stores for each pair of nodes the candidate paths that can
be leveraged for video content transmission from the producer to
the consumer. The PIB is updated periodically by the output of the
Global Routing module on a 10-minute time interval. Moreover,
the Global Discovery module will immediately invalidate the paths
in the PIB that contain overloaded links or nodes once it receives
overload alarms from overlay nodes.
Path Lookup. Consumer nodes communicate with the Path Deci-
sion module for each overlay path lookup, using the stream ID as
the input. This is first hashed to locate the producer node ID in the
SIB. The producer ID is then combined with the consumer node
ID as a key to locate the list of candidate paths in the PIB. In our
current implementation, the returned list contains 3 paths ordered
by their preference. As both information bases are built on hash
tables, the path lookup takes only a few milliseconds.

S
A

B E2

E3E1 E4

E5

Figure 5: An illustration of the long-chain problem resulting

from a cache hit.

In spite of the fast hash lookup, we would like to avoid excessive
requests to the Path Decision module. Otherwise, it may become
a performance bottleneck. Thus, LiveNet takes several steps to
minimize this load. First, if a consumer node is already serving
a stream to other viewers, it does not look up a new path upon
receiving another view request. Second, when multiple requests for
a popular stream arrive at the same time at a consumer node, the
node only initiates one path lookup to the Path Decision module.
Finally, for popular broadcasters,7 up-to-date overlay paths are
proactively pushed to all overlay nodes in advance of any viewers
arriving.
Overlay Path Establishment. As indicated in Algorithm 1, the
first element of the returned path list is considered the best can-
didate (line 5). This path will be preferentially established, while
the other two are regarded as backup paths. Note that, LiveNet’s
architecture allows for any arbitrary policies to be employed for
selecting the preferred path.

Upon retrieving a path, the consumer sends a request to the
stipulated first hop on the reverse route towards the producer. If
an intermediate relay node has already subscribed to this stream
(i.e., called a cache hit), it will stop backtracking and forward the
content to the consumer thereafter by adding it to its local Stream
Forwarding Information Base (FIB). Note that because a prior path
may have already been established, the resulting path from the
producer to the consumer might be different from the one returned
by the Path Decision module.

An undesirable consequence of the above is the long-chain prob-
lem. This is illustrated in Figure 5. Let us assume the path returned
to the consumer node 𝐸4 for this stream is 𝑝 = 𝑆 → 𝐸3 → 𝐸4
(2 hops). Now, imagine that 𝐸3 has previously subscribed to this
stream via 𝑝 = 𝑆 → 𝐴→ 𝐸1 → 𝐸3. This triggers a cache hit in 𝐸3,
and the yielded path for 𝐸4 becomes 𝑝 ′ = 𝑆 → 𝐴→ 𝐸1 → 𝐸3 → 𝐸4
(4 hops). To address this, consumer nodes monitor the quality re-
ported by clients, and switch to an alternative path (i.e., the current
best path provided by the Path Decision module) in case of poor
quality. This is done if the number of stalls (or delay) exceeds a
certain threshold that is set by the app.

5 LIVENET DATA TRANSMISSION

The previous section has shown how the Streaming Brain computes
overlay paths for each stream. We next describe the transmission

7Broadcasters’ popularity is measured by their historical viewing statistics. Large live
streaming campaigns (which will often attract a large audience) may also notify us in
advance.

LiveNet: A Low-Latency Video Transport Network SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

Producer

Stream FIB

Relay

Stream FIB

Consumer

Stream FIB
RTP RTP

RTCP RTCP

WebRTC WebRTC

Media processing GoP cacheReliable trans. Stream ctrl.

Broadcaster Viewer

Fast
path

Slow
path

Figure 6: Transmission architecture overview.

Stream
FIB

Framing GoP
cache

Forwarding

Upstream
node

Send queue

Pacer

Downstream
node

Loss recovery

Sender
rate control

Sender ctrl.

Frame ctrl.

RTP
receive
buffer

Loss
detection

Receiver
rate control

RTCP
generator

Receiver ctrl.

Ctrl.

RTP/RTX

Frame

RTCP

Fast path

Figure 7: The software stack on overlay nodes for fast-slow

path design.

process by which broadcast data is passed through the established
overlay path from the producer to individual consumer nodes.

5.1 Transmission Architecture

A broadcaster is first mapped to a producer node via DNS, and
then communicates with the producer over WebRTC. Upon receiv-
ing a request, a consumer node contacts the Streaming Brain to
retrieve a valid path via its Path Decision module. As shown in
Figure 7, each overlay node maintains a Stream FIB that records the
subscriber nodes (i.e., downstream nodes to forward to) for each
stream. The Stream FIB on a node is updated by the subscription
and unsubscription requests from downstream nodes. For instance,
in Figure 5, 𝐸4 sends a subscription request to 𝐸3, in order to sub-
scribe to stream 𝑠𝑥 . Upon receiving the subscription, 𝐸3 adds a new
forwarding rule to its local Stream FIB, < 𝑠𝑥 , {𝐸4} >. If there is
another node 𝐸5 also wants to subscribe 𝑠𝑥 from 𝐸3, 𝐸3 will update
the rule as < 𝑠𝑥 , {𝐸4, 𝐸5} >.

With the above in mind, as illustrated in Figure 6, we adopt a
novel fast-slow path design, consisting of two logical parallel packet
processing pipelines. This design essentially separates the packet
processing on a node into two paths: (i) packet forwarding on the
fast path; and (ii) congestion control and loss recovery on the slow
path. Thus, the fast and slow paths implement different functions

provided by different protocol stack layers. On receiving an RTP
packet, a node looks up the Stream FIB to get the next hop nodes
(i.e., subscribers of this stream). It then immediately forwards the
packet to all subscriber nodes in an optimistic “best-effort” way — it
neither guarantees successful delivery of the packet, nor performs
additional processing on the packet. The sending rate is controlled
by the pacer module. This pipeline is referred to as the fast path.

A copy of the packet is replicated to the receiver buffer on the
second pipeline (i.e., the slow path) in the meantime. Whereas the
fast path is optimistic, assuming no packet loss, the slow path
introduces caching, loss recovery, and congestion control via im-
mediate backup and per-hop retransmission, in case the fast path
experiences a loss. Specifically, the slow path adopts GCC [13] for
congestion control: The sender rate control decides the pacing rate
based on both the delay-based receiver-side control and the loss-
based sender-side control. This pacing rate will then be passed to
the pacer in the fast path, which will maintain inter-packet spacing
at the time each packet is scheduled for transmission. The fast path
is the executor of the congestion control strategy decided by the
slow path.

For loss recovery, each node examines holes in the sequence
numbers of the received RTP packets every 50 ms and sends the
sequence numbers of the lost packets to the upstream node in RTCP
NACK messages. The lost packets will then be retransmitted by the
loss recovery module in the upstream node.8 Note that both the
fast and slow paths follow the same physical route.

Finally, on each node, the ordered packets in the slow path will
be submitted to the Framing Control module, where packets are
decoded into GoPs. The most recent GoPs are cached to facilitate
fast startup of subsequent views on this stream.

5.2 Fine-Grained Control of Streams

Supporting Multiple Bitrates. There are two typical ways to
support multiple bitrates of live video at the broadcaster side: SVC
(scalable video encoding) and simulcast [10]. While SVC is appeal-
ing in video conferencing or video telephony [43] where the num-
ber of receivers is limited, it has a non-trivial encoding overhead
(∼10%) [43] and thus would consume significant extra bandwidth
when serving millions of concurrent viewers. We thus adopt the
simulcast mode, where the broadcaster encodes several different bi-
trate versions of the video (e.g., 720P+480P) in parallel and uploads
all versions to the producer. The consumer nodes then evaluate

8The retransmitted packets have a higher sending priority than the packets in the
send queue in the fast path.

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Li et al.

each viewer’s available bandwidth and select the best bitrate on its
behalf. Note that each bitrate version of a stream corresponds to a
unique stream ID in our system.
Seamless Stream Switching. Consumer nodes help clients stream
switch within individual sessions. This occurs during co-streaming,
where the broadcaster invites others to co-broadcast. Co-streaming
essentially ceases the solo-broadcast stream (i.e., one of the broad-
casters itself), and starts a new stream for co-broadcasting. Instead
of asking viewer clients to resubscribe to the new stream, the con-
sumer node will instead resubscribe to the new stream on the
client’s behalf. Thus, it automatically switches to forwarding the
content of the co-broadcasting stream to the client once it has re-
ceived a complete GoP of the stream. By doing so, the client will
not perceive any playback stalls during stream switching. It also
avoids embedding excess control functionality in the client.
Proactive Frame Dropping. Consumer nodes also impose other
kinds of stream control. A particular case is that a consumer node
can proactively drop frames in cases where its sending queue (per
client) is building up too fast (exceeding an app-specific threshold).
In this case, it will first drop unreferenced B frames [42]; dropping
such frames only causes short blurring. If the queue still gets longer,
P frames will be dropped, and finally the whole GoP. This proactive
frame dropping is used to combat bandwidth variations, primarily
in mobile networks [48]. In synergy, the consumer node will request
a lower bitrate stream version if the sending queue is consistently
building up.
Priority-Aware Data Sending. In the fast path, the data sending
rate of an overlay node is controlled by a pacer, where the link
bandwidth is estimated using GCC [13]. Inspired by WebRTC [13],
we use a pacing gain of 1.5 when sending I frames because they
are much larger than other P/B frames, in order to quickly empty
the sending queue to avoid queuing delays. We also prioritize the
queue containing audio packets (over video frames), in order to
avoid head-of-line blocking by large video frames.

6 EVALUATION

LiveNet has deployed 600+ CDN nodes in more than 70 countries
and regions around the globe. At present, LiveNet has been running
in Alibaba Cloud for about 3 years, underpinning a number of
large-scale live streaming applications. In this section, we evaluate
LiveNet’s performance in a production environment, as well as
present a case study of the Double 12 shopping festival.

6.1 Methodology

We compare LiveNet with Hier using logs taken from Taobao
Live video streams. We are in the middle of migrating from Hier
to LiveNet, so currently they run in parallel. LiveNet and Hier
share the same pool of CDN nodes in Alibaba Cloud, which does
not distinguish whether a session is from LiveNet or Hier when
allocating resources. They have similar footprints in terms of node
locations, allocated resources, and imposed workloads. Note, Hier
is representative of other state-of-the-art hierarchical solutions:
(i) its architecture is similar to other commercial systems for live
streaming (e.g., Facebook Live [32]); and (ii) it implements the
VDN [35] concept, a customized controller for global optimization.

Table 1: Performance comparison of LiveNet and Hier. We

report medians for the first 3 metrics.

LiveNet Hier impr. %
CDN path delay (ms) 188 393 52.2%
CDN path length 2 4 50.0%
Streaming delay (ms) 948 1,151 17.6%
0-stall ratio (%) 98 95 3.1%
Fast startup ratio (%) 95 92 3.2%

Evaluation Data. We have collected performance data from
Taobao Live, which ranks as the 2nd most popular app in China [3].
The data used in this paper spans 20 days in Dec. 2021, covering
the Double 12 shopping festival [4], which is one of the two major
online-shopping campaigns each year in Taobao Live. . We have
three data sources.

The first is logged at CDN consumer nodes, where each log
corresponds to a stream. It records the performance statistics of
the used overlay path, including: (i) the path length in hops; (ii) the
CDN path delay that includes both the propagation delay of each
hop and the processing time on individual nodes that are involved
in the path; (iii) the first-packet delay that records the time elapsed
from receiving the viewing request to sending back the first data
packet; and (iv) a local hit indicator showing whether the consumer
has already got the path information for the requested stream.

The second source is logged at individual clients. A log records
the QoE statistics of each view, including: (i) the average streaming
delay, which approximates the delay between the broadcaster’s
camera capturing a frame and the frame being displayed to the
viewer. To measure this delay, we use a delay field in the RTP header
extension. In the first packet of each I frame, the broadcaster adds
the frame encoding time, packet queue time, and half of the next
hop’s RTT. Each intermediate node adds its processing time and
half of the next hop’s RTT to this field. The viewing client adds the
client buffering time and frame decoding time, and outputs the final
delay. Put simply, the streaming delay captures the sum of CDN
path delay, first/last mile transmission delay, as well as the buffer
time; (ii) user-perceived QoE metrics, including the number of stalls,
which records how many times the playing buffer is vacant, and
fast startup indicator shows whether the startup delay is within 1
sec.

The third source is logged at the Path Decision module in the
Streaming Brain. Each log corresponds to a path request, and
records the path request response time, i.e., the duration from re-
ceiving a path request to sending back the path list.
Ethics. Data is anonymized and approved by our institute’s review
board. It was collected as part of routine operations, and we do not
link nor analyze individual client activities.

6.2 Overall Performance

We summarize the key performance statistics in Table 1 to com-
pare LiveNet and Hier. The first three metrics are the medians
over all viewing sessions, and the last two are the ratios over all
sessions (across the 20-day observation period). Compared with
Hier, LiveNet greatly improves the performance. We run a 𝑡-test,
and obtain 𝑝-values < 0.001, which indicates the improvement is

LiveNet: A Low-Latency Video Transport Network SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

0 500 1000 1500 2000
Streaming delay (ms)

0.00

0.25

0.50

0.75

1.00

CD
F

LiveNet
Hier

(a) CDF of streaming delay.

1 2 3 4 ≥ 5
of stalls/view

0

1

2

3

%

LiveNet
Hier

(b) % of views (𝑦) that experience 𝑥 stalls.

1 5 10 15 20
Day

92

94

96

Fa
st

 st
ar

tu
p

ra
tio

 (%
)

LiveNet Hier

(c) Fast startup ratio.

Figure 8: QoE metric comparison between LiveNet and Hier.

statistically significant. Specifically, the two CDN performance
metrics are improved by 50%, and the average delay is reduced by
17% from 1.15s to 0.95s. Thus, LiveNet fulfills our requirement of
sub-second streaming delay. We note that the difference between
the improvements of the CDN path delay and the streaming delay
comes from the fact that the streaming delay refers to the end-to-
end delay: It is composed of CDN path delay, edge transmission
delay (∼300 ms), as well as a player buffer of fixed length (300 ms).
Of the three parts, LiveNet can only optimize the CDN path de-
lay. The improvement in fast startup ratio and 0-stall ratio (the
ratio of the viewing sessions experiencing fast startup and 0-stalls
respectively), while small, is of great importance. Note, our 3% im-
provement equates to millions of extra sessions experiencing no
stalls because of LiveNet. We note the gap between the CDN path
delay and streaming delay is due to the processing at clients and
first/last mile transmission (i.e., the transmission between CDN
nodes and clients).

6.3 QoE Performance

We next compare LiveNet with Hier using the QoE metrics
recorded in the clients. Figure 8 shows the perceived streaming
delay, number of stalls, and the fast startup ratio.

First, we see from Figure 8(a) that, in comparison with Hier,
LiveNet improves the end-to-end streaming delay by over 200
ms for 60% of views, and by at least 100 ms for 80% of views. The
reduction for the remaining 20% of views is small because of the
limited coverage of the CDN edge nodes (i.e., producer and con-
sumer nodes) near the client’s location. In such cases, the first/last
mile transmission dominates the streaming delay.

Second, Figure 8(b) shows the percentage of stalls that occur
within a stream. Only 2% of the views have experienced at least one
stall in LiveNet, while this is 5% for Hier. Among the views experi-
encing stalls, the vast majority (60%) only had one stall, whereas the
probability of views with 5+ stalls in Hier is twice that of LiveNet.
This constitutes a significant improvement to QoE.

Third, Figure 8(c) reports the fast startup ratio for each day during
the observation period. Recall that, this represents the percentage of
streams that start within 1 second. We see that the fast startup ratio
of LiveNet consistently outperforms Hier (average 95% vs. 92%).
Note that the small variations are due to overall load changes and
also the scale-in and scale-out of underlying resources.9 We note
that the fast startup ratio is much higher than the fraction of views
experiencing a streaming delay of less than 1s (60% in Figure 8(a)).
9We may use more machines during high-load.

(0, 500] (500, 700] (700, 1000] (1000, 1500] (1500, inf]
Streaming delay (ms)

80

85

90

95

100

Fa
st

 st
ar

tu
p

ra
tio

 (%
)

Figure 9: Fast startup ratio of LiveNet vs. different streaming

delays.

This gap shows the effect of GoP caches in CDN nodes. To show
this, we plot the fast startup ratio of views with different streaming
delays in Figure 9. We see that the ratio is around 95% even when
the streaming delay lies between 1s and 1.5s; this percentage is as
high as 87% even when the streaming delay is over 1.5s.

6.4 CDN Path Performance

We next explore the reasons for the prior performance improve-
ments. Namely, we inspect our path computation and decision
making, both of which exploit our move from a fixed hierarchical
overlay to a more flexible flat model.
Streaming Brain Response Time. First, we measure the response
time of the Streaming Brain. Figure 10(a) plots the response time for
path requests to the Path Decision module. The median response
time is only 30 ms, and the 25th percentile time is about 5 ms,
confirming fast lookups.
Path Caching & Prefetching. Recall that we strive to minimize
load on the Streaming Brain by caching path information on each
node, as well as using prediction-based prefetching for paths that
we predict to be popular or to be later requested by viewers (§4.4).
When a path is already loaded into a node’s Stream FIB, we refer
to it as a local hit. Figure 10(b) plots the variation of the local hit
ratio over a random week extracted from the dataset. We see a clear
diurnal pattern, where the hit ratio reaches ≈70% between 8 pm
and 11 pm when the load reaches its highest in a day. This suggests
sufficient locality to make path caching worthwhile.

To test if this translates to improved performance, we compute
the time between when a consumer node receives a viewing request
and when it sends back the first packet. We plot the hourly average
statistics in Figure 10(c) as a time series. Except for the period
between 3 am to 6 am, when the local hit ratio is low (Figure 10(b)),

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Li et al.

0 2 4 6 8 10 12 14 16 18 20 22
Hour

0

20

40

Re
sp

on
se

 ti
m

e
(m

s)

25-75th pcrt median

(a) Path request response time.

1 2 3 4 5 6 7
Day

40

60

80

Hi
t r

at
e

(%
)

(b) Path request hit ratio.

1 2 3 4 5 6 7
Day

75

100

125

150

1s
t.

pk
t.

de
la

y
(m

s)

(c) First-packet delay.

Figure 10: Evaluation of the Path Decision module and its impact on first-packet delay.

Table 2: CDN path length distribution for LiveNet.

0 1 2 ≥ 3
All 0.13% 7.00% 92.06% 0.81%

Inter-nation. ∼0% ∼0% 73.83% 26.16%
Intra-nation. 0.13% 7.16% 92.48% 0.23%

the first-packet delay is nearly always below 100 ms. In fact, the
overall delay is as low as 70 ms between 8 pm to 11 pm, partially
because of the high local hit ratio. The low first-packet delay is the
key factor for the high fast startup ratio (95%). These results confirm
the feasibility of relying on a centralized controller, alongside the
benefits of preemptively placing decisions (paths) on the overlay
nodes.
Path Length. One of the key design goals of LiveNet is to min-
imize delay by reducing CDN path lengths. Practical experience
indicates that paths should ideally be under 3 (overlay) hops to
attain the best performance. To evaluate our ability to ensure this,
we compute the distribution of path lengths generated by LiveNet,
shown in Table 2 (first row). Note, the path length for Hier is fixed
at 4 (2 hops to the streaming center and 2 hops down to edge nodes).

90% of LiveNet’s paths are 2 hops, and under 1% are 3+ hops.10
This diversity is caused by the flat nature of LiveNet, allowing the
Streaming Brain to compose arbitrary paths. To explore the path
length diversity, we separate paths into inter-national and intra-
national transmissions (last two rows in Table 2). Inter-national
transmission is when the viewer and broadcaster reside in different
countries (intra-national otherwise). We see that the proportion
of long paths (i.e., ≥ 3) is significantly higher than that of intra-
national transmission (26% vs. 0.23%). Nevertheless, the majority
of inter-national and intra-national paths are still 2 hops (73% and
92%, respectively).
Path Delay. We next test if path reductions translate into lower
CDN delays. Figure 11 plots the distribution of CDN path delays
for different path lengths in LiveNet vs. Hier.

Unsurprisingly, the CDN path delay increases based on the num-
ber of overlay hops. 0-length paths offer the best performance,
where a single overlay node acts as both the producer and con-
sumer. In this case, the delay is solely the processing delay. While
the overall trend shows a higher delay for longer paths, we see

10Note, while we limit the path length to 3 hops when computing routes, we may still
encounter long chains (see § 6.4)

len=0
 0.13%

len=1
 7.00%

len=2
 92.06%

len ≥ 3
 0.81%

len=4
 100%

0

250

500

750

1000

CD
N

pa
th

 d
el

ay
 (m

s)

LiveNet Hier

Figure 11: CDN path delay vs. path length in LiveNet and

Hier. The box plot shows the 20th, 25th, 50th, 75th, and 80th

percentile delay. The percentages on the 𝑥-axis indicate the

proportion of paths.

LiveNet intra LiveNet inter Hier intra Hier inter
Types of paths

0

200

400

600

CD
N

pa
th

 d
el

ay
 (m

s)

Figure 12: Path delay in inter/intra-national cases.

0 3 6 9 12 15 18 21
Hour

0.075

0.100

0.125

0.150

0.175

Lo
ss

 (%
)

Figure 13: Temporal variation of average link packet loss

rate (%) within the CDN.

cases where longer paths actually result in better delays. This oc-
curs because the Streaming Brain’s dynamic load balancing allows
per-stream paths to bypass overloaded nodes.

Figure 12 further breaks down delays based on domestic vs.
international paths. As expected, the CDN delay of intra-national
transmission in LiveNet shows the best performance among all
cases, the median path delay is under 200 ms (in contrast to 400 ms
forHier in intra-national cases). For the international transmission,
the median is 330 ms for LiveNet and 450 ms for Hier.

LiveNet: A Low-Latency Video Transport Network SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

1 5 10 15 20
Day

0

1

No
rm

. d
ai

ly
 p

ea
k

th
.

Figure 14: Peak system throughput from Dec. 1st to 20, nor-

malized by the maximum daily peak throughput.

.

Table 3:LiveNet’s performance during theDouble 12 festival.

We report medians for the first 3 metrics.

Dec. 10 Dec. 11-12 Dec. 13
CDN path delay (ms) 188 192 180
CDN path length 2 2 2
Streaming delay (ms) 954 988 944
0-stall ratio (%) 97 97 97
Fast startup ratio (%) 94 94 95

Packet Loss Rate. Finally, Figure 13 reports the average packet
loss rate of the overlay links over a day. We observe that although
the loss rate rises in the peak hours (∼9 pm), it is still under 0.175%,
and the loss rate is less than 0.1% most of the time. This observa-
tion underpins our motivation for the fast-slow path transmission
architecture.

6.5 Case Study: Double 12 Shopping Festival

We conclude by presenting a brief case study of a major live stream-
ing event. The Double 12 shopping festival [4] is one of the largest
shopping campaigns on Taobao held annually. It starts at 20:00 on
Dec. 11th and ends at 23:59 on Dec. 12th, 2021. During this period,
viewers scramble for the limited amount of discount goods, creating
a significant spike in requests. Figure 14 depicts the normalized
peak throughput per day, where we observe a significant spike
during the festival (the peak throughput is doubled compared to a
regular day).

We can now inspect how this load translates into CDN perfor-
mance and QoE metrics. Table 3 presents the performance metrics
between 10th to 13th Dec. Intuitively, one would expect these met-
rics to degrade during this significant extra load. However, there
is no noticeable degradation observed, showing that LiveNet can
effectively handle such aggressive spikes in demand. We highlight
that this was achieved by an up-scaling in our provisioning during
the festival (i.e., increasing the bandwidth resource cap for each
node/link and leveraging more CDN nodes in Alibaba Cloud). We
observe this in the number of unique overlay paths, which increased
by 20% during Dec. 11th to 12th, in comparison with the days before
and after.

7 DISCUSSION

7.1 Deployment Experiences

Streaming Brain Scalability. While logically centralized, the
Streaming Brain is deployed on multiple geo-replicated data cen-
ters. Specifically, the Global Routing module along with the Global
Discovery module is replicated in a few Alibaba data centers for
reliability. We maintain consistency using a Paxos-like scheme [31].
Because the Path Decision module may impact stream startup de-
lays, we replicate it in more locations to shorten the distances to
consumer nodes. These locations include large AS networks (e.g.,
AS 4134) in which we deploy many CDN nodes as well as at IXPs
(e.g., CNIX). Note that, replicas of the Path Decision module are
updated by the Global Routing module.
Maintaining Multiple Paths. The Path Decision module in
the Streaming Brain is configured to return 3 paths for each path
request, ordered by their preference. However, during periods of
heavy load, we have observed that path quality can degrade so
rapidly that it is impossible for the Streaming Brain to update be-
fore streams have been affected. Thus, we enable consumer nodes to
dynamically re-route paths based on local observations too. Specif-
ically, consumer nodes establish two paths, with the highest pri-
ority one transmitting data and the second one only sustaining
the connection as a backup. By doing so, consumer nodes can
autonomously switch to the backup path when the primary one
encounters a high delay or packet loss.
Mobility Support. Individual users may move during streams,
and they may also switch between cellular and WiFi networks. If
the optimal CDN consumer node of a viewer changes because of
mobility, the client simply resubscribes to the stream through the
new consumer node. The playback buffer at clients (e.g., 300 ms in
Taobao Live) can help mitigate the possible stalls during mobility.
In contrast, if the optimal producer CDN node changes due to
broadcaster mobility, we wish to avoid having to update all prior
stream paths in the CDN. Hence, the Streaming Brain instructs the
old producer node to subscribe to the new one. By doing so, the
existing overlay paths do not need to change.

7.2 Lessons learned

Flexibility Provided by LiveNet. LiveNet separates the con-
trol and data plane. The control plane is only responsible for the
global optimization of routing, and is no longer involved in the
end-to-end data transmission. The data plane, on the other hand,
is in charge of media processing as well as the data transmission,
following the configurations of the control plane. This separation
offers greater flexibility as we can easily configure each overlay
node to change the data path and the media processing logic. Fur-
ther, because overlay nodes provide identical functionalities, we
can easily circumvent the failed or overloaded nodes by migrating
the tasks to others as instructed by the control plane.
Accelerating Playback Startup. While an extra path lookup
may impact the startup delay of a view, 95% of viewing sessions in
LiveNet still start within 1 second (see Table 1), and the average
first-packet delay from consumer nodes receiving requests to send-
ing back the first packet is as low as around 100 ms (see Figure 10(c)).

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Li et al.

Our experience is that both the application and transport layers are
equally important in accelerating playback. At the application layer,
we leverage prediction-based overlay path pre-request and fine-
controlled GoP caching. At the transport layer, we send I frames
with a larger pacing gain (1.5). One of the interesting directions
we are investigating is to leverage multi-path transport protocols
(e.g., MPQUIC [48]) to improve the performance between overlay
nodes and clients (i.e., the first/last mile transmission), which could
further reduce the streaming delay.
ACDN forMultiple Services. Thanks to its flexibility, several low-
latency live streaming services run on LiveNet, including Taobao
Live, DingTalk video telephony, and several third-party apps (e.g.,
online classes).11 These applications have different peak times in a
day. For instance, DingTalk’s peak time is during working hours,
while Taobao Live’s peak time is in the evening. By balancing these
applications across the same underlying infrastructure, resource
utilization can be improved and the cost can also be amortized.
Thin Clients. We have also learned to remove clients from the
control loop as much as possible. For example, in LiveNet, the
consumer nodes act as a delegate for each client’s bitrate selec-
tion, as well as performing other services such as stream switching
and frame drops. This has enabled us to more easily roll out new
functionality, as well as simplify clients for deployment on hetero-
geneous devices.

7.3 Open Questions

There are several open questions we wish to highlight to further
improve LiveNet. First, our two-step routing computation is heuris-
tic and based on recent statistics of the CDN overlay. Data-driven
routing [40] with load predictions and optimization-based solutions
[9, 37] are worth investigating. Second, the flexibility provided by
the flat CDN architecture creates challenges regarding capacity
planning. We plan to experiment with deep learning-based over-
lay network planning [50]. This could use the overlay topology,
the routing scheme, traffic demands, and cost models as an input.
Finally, tailored congestion control algorithms for the transmis-
sion between overlay nodes may provide better performance than
GCC. One of the interesting directions is to explore the benefits of
online-learning-based congestion control [18].

8 RELATEDWORK

Overlay Networks. Overlay networks have been studied exten-
sively, including those optimized for low delay [17, 27]. In the
context of content delivery, these were largely intended as an alter-
native to IP multicast [11, 14, 16, 30]. However, they often overlook
the low latency requirement of live streaming and are, instead, ori-
ented towards a peer-to-peer context [22, 47]. Conventional CDN
overlays largely rely on multi-tier structures [44]. This structure
has the benefit of enabling hierarchical caching, which can improve
the QoE of VoD [8] and even live streaming [32, 41]. Our last gen-
eration CDN, Hier, uses a similar structure, but falls short of the
stringent latency requirement imposed by low-latency live stream-
ing like Taobao Live. While the idea of a flat CDN architecture with

11We use different routing schemes and impose different constraints on the computed
overlay paths for each one.

centralized path computation has been proposed before [29, 37],
we augment it with our novel transmission architecture (i.e., the
fast-slow path with fine-grained frame control).
Overlay Routing. Overlay routing has been investigated since
the early 2000s, when the idea of centralized overlay routing using
optimization-based methods was proposed [9]. There has been
recent work revisiting overlay routing for video delivery [34].
VDN [35] proposes a hybrid centralized+distributed control for
live video routing in CDN overlays. In contrast to us, this work
overlooked fast-slow path forwarding on CDN nodes as covered
in LiveNet. VIA [25] exploits the opportunity of relaying selec-
tive VoIP calls over overlay servers for better performance. While
LiveNet also exploits relay paths, we mainly target large-scale
live streaming. Prior approaches that map users to optimal CDN
nodes (or edges), using either DNS [15] or anycast [20, 46], are
complementary to our work.
Video Control Plane. We contribute to the wider literature on
video control planes. Liu et al. explore the potential of global video
control planes in improving video QoE [33] via a guided selection
of suitable CDNs and video bitrates. C3 [23] implements a video
control plane that assigns clients to suitable CDNs. CFA [26] is a
data-driven approach that can be used by these video control planes
for global optimization. In contrast, the centralized control plane
in LiveNet interacts with overlay nodes (as opposed to clients) for
overlay node configuration.
Low-Latency Video. Many have proposed video codecs to de-
crease end-to-end latency. Salsify [21] relies on a specialized codec
to enable better interaction between the codec and the transport
layer. Some other works [45, 49] advocate using deep learning to
coordinate the codec and the transport layer for bitrate selection.
LiveNAS [28] and Dejavu [24], on the other hand, enhance the live
streaming quality by applying neural super-resolution at ingress
nodes (i.e., producers in LiveNet). These optimizations focus on
the first mile of live streaming and thus are orthogonal to our work.

9 CONCLUSION

This paper has presented LiveNet, a transport network for large-
scale low latency live streaming. LiveNet includes a centralized
Streaming Brain that computes routes based on a global view of
the network, and a flat CDN overlay that implements fast content
transmission and fine-grained control of frames. We have detailed
the design of each component, and compared LiveNet with Hier,
a state-of-the-art solution based on hierarchical CDN overlays. We
have shown the superior performance of LiveNet and discussed
the lessons we have learned while running LiveNet over the last 3
years. We hope our experiences can foster further research in this
area to offer improved QoE for large-scale live streaming.

ACKNOWLEDGMENT

The authors would like to thank the shepherd Ramesh Sitaraman
and the anonymous reviewers for their constructive comments.
We thank all teams at Alibaba that help deploy LiveNet. Zhenyu
Li’s work was partially supported by National Key R&D Program
of China (2019YFB1802800), Beijing Natural Science Foundation
(JQ20024), and Natural Science Foundation of China (U20A20180,
62072437).

LiveNet: A Low-Latency Video Transport Network SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

REFERENCES

[1] Youku lands domestic broadcast rights for 2018 world cup. http://www.ecns.cn/
business/2018-05-30/detail-ifyuurnp0995123.shtml, 2018.

[2] 2020 global networking trends report. https://www.cisco.com/c/dam/m/en_us/
solutions/enterprise-networks/networking-report/files/GLBL-ENG_NB-06_0_
NA_RPT_PDF_MOFU-no-NetworkingTrendsReport-NB_rpten018612_5.pdf,
2020.

[3] Top mobile apps & platforms in china 2021. https://www.chinainternetwatch.
com/30778/top-mobile-apps/, 2021.

[4] 12.12 sale : All you need to know about 1212 sale (double 12). https://cedcommerce.
com/blog/all-you-need-to-know-about-double-12/, 2022.

[5] Broadcast live solution for global live streaming - alibaba cloud. https://www.
alibabacloud.com/solutions/broadcast-live, 2022.

[6] Key takeaways from the taobao live 2021 livestream-
ing report. https://chinamktginsights.com/
key-takeaways-from-the-taobao-live-2021-livestreaming-report/, 2022.

[7] Taobao live homepage. https://taolive.taobao.com/, 2022.
[8] V. K. Adhikari, Y. Guo, F. Hao, V. Hilt, Z.-L. Zhang, M. Varvello, and M. Steiner.

Measurement study of netflix, hulu, and a tale of three cdns. IEEE/ACM Trans.
Netw., page 1984–1997, 2015.

[9] K. Andreev, B. M. Maggs, A. Meyerson, and R. K. Sitaraman. Designing overlay
multicast networks for streaming. In Proceedings of the fifteenth annual ACM
symposium on Parallel algorithms and architectures, pages 149–158, 2003.

[10] Z. Avramova, D. De Vleeschauwer, K. Spaey, S. Wittevrongel, H. Bruneel, and
C. Blondia. Comparison of simulcast and scalable video coding in terms of the
required capacity in an iptv network. In Packet Video 2007, pages 113–122, 2007.

[11] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable application layer
multicast. In Proceedings of the ACM SIGCOMM 2002 Conference, page 205–217,
2002.

[12] D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter. AdaptSize: Orchestrating
the hot object memory cache in a content delivery network. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17), pages
483–498, 2017.

[13] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo. Analysis and design of
the google congestion control for web real-time communication (webrtc). In
Proceedings of the 7th International Conference on Multimedia Systems, pages 1–12,
2016.

[14] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh.
Splitstream: High-bandwidth multicast in cooperative environments. In Proceed-
ings of the Nineteenth ACM Symposium on Operating Systems Principles, page
298–313, 2003.

[15] F. Chen, R. K. Sitaraman, and M. Torres. End-user mapping: Next generation
request routing for content delivery. In Proceedings of the ACM SIGCOMM 2015
Conference, page 167–181, 2015.

[16] Y. Chu, S. Rao, S. Seshan, and H. Zhang. Enabling conferencing applications on
the internet using an overlay muilticast architecture. In Proceedings of the ACM
SIGCOMM 2001 Conference, page 55–67, 2001.

[17] J. Dai, Z. Chang, and S.-H. G. Chan. Delay optimization for multi-source multi-
channel overlay live streaming. In 2015 IEEE international conference on commu-
nications (ICC), pages 6959–6964. IEEE, 2015.

[18] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey, and M. Schapira.
PCC vivace: Online-Learning congestion control. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18), pages 343–356, Renton,
WA, Apr. 2018. USENIX Association.

[19] D. Eppstein. Finding the k shortest paths. SIAM Journal on computing, 28(2):652–
673, 1998.

[20] A. Flavel, P. Mani, D. Maltz, N. Holt, J. Liu, Y. Chen, and O. Surmachev. Fastroute:
A scalable load-aware anycast routing architecture for modern cdns. In 12th
{USENIX} Symposium on Networked Systems Design and Implementation ({NSDI}
15), pages 381–394, 2015.

[21] S. Fouladi, J. Emmons, E. Orbay, C. Wu, R. S. Wahby, and K. Winstein. Salsify:
Low-Latency network video through tighter integration between a video codec
and a transport protocol. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18), pages 267–282, 2018.

[22] M. J. Freedman. Experiences with coralcdn: A five-year operational view. In
NSDI, pages 95–110, 2010.

[23] A. Ganjam, F. Siddiqui, J. Zhan, X. Liu, I. Stoica, J. Jiang, V. Sekar, and H. Zhang.
C3: Internet-Scale control plane for video quality optimization. In 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 15), page
131–144, 2015.

[24] P. Hu, R. Misra, and S. Katti. Dejavu: Enhancing videoconferencing with prior
knowledge. In Proceedings of the 20th InternationalWorkshop onMobile Computing
Systems and Applications, page 63–68, 2019.

[25] J. Jiang, R. Das, G. Ananthanarayanan, P. A. Chou, V. Padmanabhan, V. Sekar,
E. Dominique, M. Goliszewski, D. Kukoleca, R. Vafin, and H. Zhang. Via: Improv-
ing internet telephony call quality using predictive relay selection. In Proceedings
of the 2016 ACM SIGCOMM Conference, page 286–299, 2016.

[26] J. Jiang, V. Sekar, H. Milner, D. Shepherd, I. Stoica, and H. Zhang. CFA: A practical
prediction system for video QoE optimization. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16), page 137–150, 2016.

[27] S. Kaune, K. Pussep, C. Leng, A. Kovacevic, G. Tyson, and R. Steinmetz. Modelling
the internet delay space based on geographical locations. In 2009 17th Euromicro
International Conference on Parallel, Distributed and Network-based Processing,
pages 301–310. IEEE, 2009.

[28] J. Kim, Y. Jung, H. Yeo, J. Ye, and D. Han. Neural-enhanced live streaming:
Improving live video ingest via online learning. In Proceedings of the ACM
SIGCOMM 2020 Conference, page 205–217, 2020.

[29] L. Kontothanassis, R. Sitaraman, J. Wein, D. Hong, R. Kleinberg, B. Mancuso,
D. Shaw, and D. Stodolsky. A transport layer for live streaming in a content
delivery network. Proceedings of the IEEE, 92(9):1408–1419, 2004.

[30] D. Kostić, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: High bandwidth data
dissemination using an overlay mesh. In Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles, page 282–297, 2003.

[31] L. Lamport. The part-time parliament. ACM Transactions on Computer Systems
16, 2 (May 1998), 133-169. Also appeared as SRC Research Report 49. This paper was
first submitted in 1990, setting a personal record for publication delay that has since
been broken by [60]., May 1998. ACM SIGOPS Hall of Fame Award in 2012.

[32] F. Larumbe and A. Mathur. Under the hood: Broadcasting
live video to millions. https://engineering.fb.com/2015/12/03/ios/
under-the-hood-broadcasting-live-video-to-millions/, 2015.

[33] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Stoica, and H. Zhang. A case
for a coordinated internet video control plane. In Proceedings of the 2012 ACM
SIGCOMM Conference, page 359–370, 2012.

[34] B. M. Maggs and R. K. Sitaraman. Algorithmic nuggets in content delivery.
SIGCOMM Comput. Commun. Rev., 45(3):52–66, jul 2015.

[35] M. K. Mukerjee, D. Naylor, J. Jiang, D. Han, S. Seshan, and H. Zhang. Practical,
real-time centralized control for cdn-based live video delivery. In Proceedings of
the 2015 ACM SIGCOMM Conference, page 311–324, 2015.

[36] A. Raman, G. Tyson, and N. Sastry. Facebook (a) live? are live social broadcasts
really broad casts? In Proceedings of the 2018 world wide web conference, pages
1491–1500, 2018.

[37] R. K. Sitaraman, M. Kasbekar, W. Lichtenstein, and M. Jain. Overlay networks:
An akamai perspective. Advanced Content Delivery, Streaming, and Cloud Services,
51(4):305–328, 2014.

[38] Z. Song, D. S. Berger, K. Li, and W. Lloyd. Learning relaxed belady for content
distribution network caching. In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20), pages 529–544, 2020.

[39] A. Sundarrajan, M. Kasbekar, R. K. Sitaraman, and S. Shukla. Midgress-aware traf-
fic provisioning for content delivery. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 543–557, 2020.

[40] A. Valadarsky, M. Schapira, D. Shahaf, and A. Tamar. Learning to route. In
Proceedings of the 16th ACM Workshop on Hot Topics in Networks, page 185–191,
2017.

[41] B.Wang, X. Zhang, G.Wang, H. Zheng, and B. Y. Zhao. Anatomy of a personalized
livestreaming system. In Proceedings of the 2016 Internet Measurement Conference,
page 485–498, 2016.

[42] Wikipedia contributors. Group of pictures — Wikipedia, the free encyclopedia,
2021. [Online; accessed 24-January-2022].

[43] Y. Xu, C. Yu, J. Li, and Y. Liu. Video telephony for end-consumers: Measurement
study of google+, ichat, and skype. In Proceedings of the 2012 Internet Measurement
Conference, page 371–384, 2012.

[44] H. Yin, X. Liu, T. Zhan, V. Sekar, F. Qiu, C. Lin, H. Zhang, and B. Li. Design and
deployment of a hybrid cdn-p2p system for live video streaming: Experiences with
livesky. In Proceedings of the 17th ACM International Conference on Multimedia,
page 25–34, 2009.

[45] H. Zhang, A. Zhou, J. Lu, R. Ma, Y. Hu, C. Li, X. Zhang, H. Ma, and X. Chen. OnRL:
Improving Mobile Video Telephony via Online Reinforcement Learning. 2020.

[46] X. Zhang, T. Sen, Z. Zhang, T. April, B. Chandrasekaran, D. Choffnes, B. M. Maggs,
H. Shen, R. K. Sitaraman, and X. Yang. Anyopt: Predicting and optimizing ip
anycast performance. In Proceedings of the 2021 ACM SIGCOMM 2021 Confer-
ence, SIGCOMM ’21, page 447–462, New York, NY, USA, 2021. Association for
Computing Machinery.

[47] M. Zhao, P. Aditya, A. Chen, Y. Lin, A. Haeberlen, P. Druschel, B. Maggs, B. Wis-
hon, and M. Ponec. Peer-assisted content distribution in akamai netsession. In
Proceedings of the 2013 Conference on Internet Measurement Conference, IMC ’13,
page 31–42, New York, NY, USA, 2013. Association for Computing Machinery.

[48] Z. Zheng, Y. Ma, Y. Liu, F. Yang, Z. Li, Y. Zhang, J. Zhang, W. Shi, W. Chen,
D. Li, Q. An, H. Hong, H. H. Liu, and M. Zhang. Xlink: Qoe-driven multi-path
quic transport in large-scale video services. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, SIGCOMM ’21, page 418–432, New York, NY, USA,
2021. Association for Computing Machinery.

[49] A. Zhou, H. Zhang, G. Su, L. Wu, R. Ma, Z. Meng, X. Zhang, X. Xie, H. Ma,
and X. Chen. Learning to coordinate video codec with transport protocol for
mobile video telephony. In The 25th Annual International Conference on Mobile
Computing and Networking, 2019.

http://www.ecns.cn/business/2018-05-30/detail-ifyuurnp0995123.shtml
http://www.ecns.cn/business/2018-05-30/detail-ifyuurnp0995123.shtml
https://www.cisco.com/c/dam/m/en_us/solutions/enterprise-networks/networking-report/files/GLBL-ENG_NB-06_0_NA_RPT_PDF_MOFU-no-NetworkingTrendsReport-NB_rpten018612_5.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/enterprise-networks/networking-report/files/GLBL-ENG_NB-06_0_NA_RPT_PDF_MOFU-no-NetworkingTrendsReport-NB_rpten018612_5.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/enterprise-networks/networking-report/files/GLBL-ENG_NB-06_0_NA_RPT_PDF_MOFU-no-NetworkingTrendsReport-NB_rpten018612_5.pdf
https://www.chinainternetwatch.com/30778/top-mobile-apps/
https://www.chinainternetwatch.com/30778/top-mobile-apps/
https://cedcommerce.com/blog/all-you-need-to-know-about-double-12/
https://cedcommerce.com/blog/all-you-need-to-know-about-double-12/
https://www.alibabacloud.com/solutions/broadcast-live
https://www.alibabacloud.com/solutions/broadcast-live
https://chinamktginsights.com/key-takeaways-from-the-taobao-live-2021-livestreaming-report/
https://chinamktginsights.com/key-takeaways-from-the-taobao-live-2021-livestreaming-report/
https://taolive.taobao.com/
https://engineering.fb.com/2015/12/03/ios/under-the-hood-broadcasting-live-video-to-millions/
https://engineering.fb.com/2015/12/03/ios/under-the-hood-broadcasting-live-video-to-millions/

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Li et al.

[50] H. Zhu, V. Gupta, S. S. Ahuja, Y. Tian, Y. Zhang, and X. Jin. Network planning
with deep reinforcement learning. In Proceedings of the 2021 ACM SIGCOMM

2021 Conference, page 258–271, 2021.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Low-Latency Live Streaming
	2.2 Alibaba Hierarchical CDN (Hier)
	2.3 LiveNet: from Hierarchical to Flat CDN

	3 LiveNet Overview
	4 Streaming Brain Design
	4.1 Overview
	4.2 Global Discovery Module
	4.3 Global Routing Module
	4.4 Path Decision Module

	5 LiveNet Data Transmission
	5.1 Transmission Architecture
	5.2 Fine-Grained Control of Streams

	6 Evaluation
	6.1 Methodology
	6.2 Overall Performance
	6.3 QoE Performance
	6.4 CDN Path Performance
	6.5 Case Study: Double 12 Shopping Festival

	7 Discussion
	7.1 Deployment Experiences
	7.2 Lessons learned
	7.3 Open Questions

	8 Related Work
	9 Conclusion
	References

