
NeSMA: Enabling Network-Level State-Aware
Applications in SDN

Chen Sun1, Jun Bi1, Hongxin Hu2, Zhilong Zheng1

1Institute for Network Sciences and Cyberspace, Tsinghua University
1Department of Computer Science, Tsinghua University

1Tsinghua National Laboratory for Information Science and Technology (TNList)
2Clemson University

c-sun14@mails.tsinghua.edu.cn junbi@tsinghua.edu.cn hongxih@clemson.edu zhengzl15@mails.tsinghua.edu.cn

Abstract—As the de facto data plane technique of Software-
Defined Networking (SDN), OpenFlow introduces significant
programmability to enable innovative network applications. How-
ever, the simple OpenFlow data plane only maintains flow-
level counters and lacks an efficient mechanism to manage
network-level states, which limits its support for advanced state-
aware applications. Regularly pulling whole state information
from the data plane to the controller might incur untimely
response to important network-level states such as CPU ex-
haustion, switch overload, etc and cause unnecessary traffic. To
address above challenges, we introduce a novel Network-level
State Management Architecture (NeSMA) to efficiently support
advanced network-level state-aware applications by exploiting the
opportunity of SDN central control. The data plane could be
configured to check state regularly and report to the controller
when triggered by state transitions. We design both sequential
and parallel composition methods to deal with complex network-
level states in NeSMA. To demonstrate the feasibility of our
approach, we implement a software prototype of NeSMA, based
on which we develop a data-center flow scheduling application.
Experimental results show that NeSMA can process network-
level states with low network resource consumption and high
scalability without compromising packet forwarding efficiency.

I. INTRODUCTION

Software-Defined Networking (SDN) is an emerging net-

work architecture that provides unprecedented programmabil-

ity, automation, and network control by decoupling the control

plane and the data plane. As a representative technique of

SDN, OpenFlow [13] introduces a “match-action” paradigm

for the SDN data plane where programmers could specify a

flow through a header matching rule along with processing

actions applied to the matched packets. OpenFlow switches

remain simple and are only in charge of forwarding, while all

intelligence is placed at the controller side.
Although the programmability of OpenFlow significantly

helps manage and process network flows and is effective for

many applications on top of the controller, the simplicity of

OpenFlow abstraction also brings great challenges in build-

ing advanced state-aware network applications such as load

balancing [11], fast reroute [20], flow scheduling [7], etc.

The necessity to add states into OpenFlow has been recently

recognized by the research community [8], [9], [12], [14], [21],

[22]. In most of exiting work, the researchers claim that current

SDN switches cannot support complex stateful processing

and define states of network in a local, flow-level scope to

support some stateful network applications. However, those

existing approaches are only applicable for designing network

applications, such as MAC learning and port knocking, which

simply need local states of flows on a single switch.

The term “state” in networking can be defined as historical

information that may affect future packet processing policies.

We classify “state” into flow-level and network-level according

to the scale it represents. Flow-level states refer to local states

associated with traffic flows that are collected inside one

switch and will only affect the forwarding policy in the same

switch. Typical flow-level states include flow TCP connection

state, packet counter of flows, FTP control channel state, etc.

For instance, a stateful firewall keeps tracking TCP connection

states of each flow and determines packet handling process

based on stateful policies. On the other hand, network-level
states refer to states that exist in multiple switches and may

influence the packet processing policies on other switches. For

example, in a flow scheduling application, if a particular switch

is overloaded, other switches that are transmitting traffic to this

switch should be configured to steer traffic away.

However, our study reveals that there are great challenges

in building network-level state-aware applications in SDN.

Firstly, exiting OpenFlow data plane can only maintain flow-

level counters and lacks an effective mechanism to gather

other useful network-level states, such as hardware TCAM

usage, and node processing latency, that are critical for

building many state-aware applications. Secondly, there is no

efficient way to quickly react to network-level state transitions.

Regularly pulling the whole state information from the data

plane to the controller might incur untimely response to some

network-level states such as CPU exhaustion, switch overload,

etc. Some protocols for SDN including NETCONF [10],

OVSDB [16] and OF-Config are capable of monitoring and

configuring switches during runtime. However, they could not

monitor some resource and performance states as mentioned

above, and still suffer from untimely response caused by

controller initiated control actions.

To address above challenges, we introduce an innovative

2016 IEEE 24th International Conference on Network Protocols (ICNP)
Workshop on COntrol, Operation and appLication in SDN protocols (CoolSDN 2016)

1
978-1-5090-3281-5/16/$31.00 ©2016 IEEE

Network-level State Management Architecture (NeSMA) to

support complex state-aware applications in SDN with little

resource consumption and great scalability. We add a Network
State Processor in the data plane to monitor states from out-

side the OpenFlow flow table pipeline, exerting no influence

on forwarding performance. We adopt a triggered reporting
mechanism in the data plane to report to the controller on state

transition. We also propose sequential and parallel composi-

tions of network level states in NeSMA. Programmers can then

construct sophisticated network-level state-aware applications

through the two state composing mechanisms.
The paper makes the following contributions:

• We propose a novel network-level state management

architecture, NeSMA, to support network-level state-

aware applications in SDN. We design control plane

and data plane enhancements for NeSMA, along with

corresponding APIs.

• We propose both sequential and parallel composition

approaches to process complex network-level states.

• We implemented a software prototype of NeSMA and

developed a data-center flow scheduling application. Ex-

perimental results show that NeSMA does not compro-

mise data plane forwarding performance and can support

network-level states in SDN with little network resource

consumption and great scalability.

The rest of this paper is organized as follows. Section II

elaborates the detailed design of each module of NeSMA.

Section III describes two state composition methods supported

by NeSMA, including sequential and parallel compositions.

Section IV introduces the implementation and evaluation of

NeSMA. Section V lists some related works. We conclude

this paper in Section VI.

II. DESIGN

A. Intuitions and Design Overview
We observe that network-level states have some unique

characteristics compared to flow-level states. (1) Few Cate-
gories with High Reusability: A determined set of network-

level states need to be gathered including throughput, CPU

usage, memory usage, etc. We could ignore the complexity of

various applications and only focus on limited types of states.

(2) Involving multiple nodes: This is a major difference from

flow-level states. Network-level states in one node should be

transmitted to invoke policy changes on other nodes. Thus,

an efficient delivery of states is required to achieve both

timeliness and resource efficiency. (3) High Complexity: One

application might need to monitor multiple states in sequential

or parallel. For instance, a load balancing application may

react differently to a 70%, 80% or 90% loaded switch. It needs

to monitor those four grades of throughput at the same time.
Meanwhile, SDN naturally brings great opportunity for

supporting network-level states. The centralized controller is

capable of timely sensing and controlling data plane devices.

Thus, network-level states can simply be sent to the controller

for applications to affect other switches. Moreover, network in-

telligence is centralized in the controller. Applications running

Applications

Load
Balancing

Flow
Scheduling

Anomaly
Detection

OpenFlow North Bound API NeSMA North Bound API

OpenFlow North Bound API NeSMA South Bound API

Flow Tables

Meter Tables

Group Tables

State
ID

Registered
Switch IDs

State
Type Parameter Operator Thres

-hold
Report
Interval

Interested
Applications

1 1, 3, 4, 6 CPU
Usage - ≥ 80% 0 Load Balancing

Flow Scheduling

… … … … … … … …

Application Interest Table

State
ID

State
Type Parameter Operator Threshold Report

Interval

1 CPU
Usage - ≥ 80% 0

… … … … … …
State Registration Table

……

CNSP

DNSP

Control Plane

Data Plane

Fig. 1: NeSMA Architecture

on top of the controller can identify exactly the source and

influence target of states, providing opportunity for efficient

management of and reaction to network-level states.

Therefore, the design philosophy of NeSMA is to extend

OpenFlow to support timely network-level state monitoring

and response, while keeping the forwarding pipeline fast and

simple. A strawman solution to support network-level state

monitoring is for switches to inform each other directly about

states. However, a switch itself does not know which switches

care about its state. State flooding may cause unnecessary

traffic and extra policies to forward states among switches. Be-

sides, in SDN each switch does not have enough intelligence to

react to network-level states. In NeSMA, we propose a “trigger

report” mode where the controller will configure each switch

about what states to monitor. The switch checks whether the

state is detected. A certain state appearance could trigger the

switch to report to the controller. The controller will deliver

the state to associated applications. Finally, applications will

generate new policies and distribute them to relevant switches.

For a load balancing application, the controller informs a

switch to report when its throughput reaches 80% of its

capacity. The switch checks its throughput regularly and report

to the controller when the threshold is reached. The load

balancing application will distribute traffic steering policies

to associated switches to alleviate the hotspot. In order to

satisfy the requirements of some applications, we also support

two other modes including switch regularly reporting state to

the controller, and the controller actively pulling states from

switches, which will be elaborated in the following sections.

We design three fundamental components in NeSMA

(Fig. 1) to support network-level state-aware applications. We

design a processing unit in the software control path of SDN

switches named Data Plane Network State Processor (DNSP).
We maintain a State Registration Table (SRT) in DNSP, which

records what states the switch should monitor and report. In

2016 IEEE 24th International Conference on Network Protocols (ICNP)
Workshop on COntrol, Operation and appLication in SDN protocols (CoolSDN 2016)

2

TABLE I: State Types Supported in NeSMA

State Type State Collection Method
States in OF meter table Fetch state from OpenFlow meter table, including per flow table packet lookups and matches, per flow entry

packets, per port packets, per queue packets, etc.
CPU Usage Perform system calls to get system CPU usage.
TCAM Usage This state can only be fetched for hardware switches. DNSP should maintain a table entry number and be

updated each time a flow entry is added or removed from the hardware switch.
SRAM Usage Perform system calls to get system SRAM usage.
Switch Availability This state is generated by the controller when sending Keep Alive messages to switches.

the control plane, we design a Control Plane Network State
Processor (CNSP), in which an Application Interest Table
(AIT) is maintained to record the applications’ interests on

states. In addition, we design south-bound and north-bound

APIs to enable NeSMA.

B. State Monitoring and Reporting Modes

We design three mechanisms for switches to monitor states

and report to the controller.

• Triggered Reporting: In this mode, the controller con-

figures the switches to report when certain states are

detected. This method ensures timely report and response,

saves network bandwidth and preserves scalability. Be-

sides, another benefit of triggered reporting mode is to re-

lieve the controller from examining various states against

various thresholds proposed by applications, which is a

heavy task for the controller and would occupy controller

capacity.

• Regular Reporting: This mode is used when an appli-

cation tries to maintain historical states in a period for

statistical survey, classification, etc [17], [19]. Compared

with traditional OpenFlow, the controller can be offloaded

from regularly pulling states from the data plane, which

doubles the transmission latency and bandwidth cost.

• Proactive Pulling: This mode is used when the appli-

cation requires an immediate report of current states.

For instance, if a traffic anomaly detection applications

detects an attack on one switch, it needs to acknowl-

edge immediately whether the same attack happens on

other switches. Thus, the controller should be capable of

pulling states from the data plane.

In NeSMA, these three mechanisms are supported through

both control plane and data plane extensions.

C. Data Plane Enhancement

1) State Types: The control plane and the data plane should

agree on a set of states that the switches can gather in the data

plane. Types and state collection methods are listed in Table I.
2) Data Plane Network State Processor: Data Plane Net-

work State Processor (DNSP) records states to monitor and

report to the controller. It can receive and process controller

configurations, gather states, and report on state transitions.

DNSP is placed in the software control path of SDN

hardware or software switches, outside the packet forwarding

pipeline. If we fix DNSP inside the datapath, it will be difficult

to monitor states including CPU usage, SRAM usages and

other states that reside out of the data path. Besides, DNSP

outside the data path will not interfere packet processing.

Forwarding performance will therefore not be compromised.

For Triggered Report mode, DNSP collects states with a

Default Interval, which is maintained in DNSP and can be

modified by the controller. If an application requires a more

timely report of state appearance, the controller could decrease

the Default Interval to enable more intense state monitoring.

3) State Registration Table: A State Registration Table

(SRT) is used to keep configurations from the controller about

what states to collect. The structure of SRT is shown in Fig. 2.

State ID
State
Type

Parameter Operator Threshold
Report
Interval

Report
Detail

1 CPU Usage - ≥ 80% 0 -

2 Port Packet
Number Port ID = 1 < 10,000 0 Packet IP

addresses

3 Queue
Length Queue ID = 1 - - 30 -

Fig. 2: SRT Structure

• State ID: This field is uniquely assigned by the controller.

When a certain state is detected, the switch will include

its ID in the report to mark the transition of this state.

• State Type: State Type field is encoded as an enumerate

parameter for states listed in Table I.

• Parameter: This field is to assign parameters for different

states, such as Port ID for Per Port Packet Number state.

• Operator: This field maintains simple comparison oper-

ators including <,>,≤,≥,=, �=.

• Threshold: This field notes the threshold to report a

certain state detection to the controller.

• Report Interval: Each entry could specify a Report In-
terval. If this field has a non-zero value, it will enable

the Regular Report mode, and Triggered Report mode

otherwise.

• Report Detail: This field is assigned to indicate the

content to report to the controller. For instance, if a switch

is configured to detect elephant flows, the switch could

report the appearance of an elephant flow as well as the

IP addresses of this flow. The report details for each states

could be flexibly assigned by the controller according to

application requirements.

If State Type(Parameter) − Operator − Threshold is

TRUE or the timer reaches the Report Interval, the state

should be reported to the controller. SRT entries can be

maintained in SRAM instead of TCAM since exact matches

are performed on SRT entries for state monitoring. SRT entries

can only be added or removed by the controller.

2016 IEEE 24th International Conference on Network Protocols (ICNP)
Workshop on COntrol, Operation and appLication in SDN protocols (CoolSDN 2016)

3

D. Control Plane Enhancement

1) Control Plane Network State Processor: Control Plane

Network State Processor (CNSP) maintains the applications’

interests on states in Application Interest Table (AIT). It

numbers states uniquely and records them in AIT. It provides

interfaces for applications to register or unregister interests.

CNSP is able to change the Default Interval in the data

plane according to applications’ requirements for faster or

slower state monitoring. As mentioned in Proactively Pulling
mechanism, CNSP should support directly pulling states from

the data plane.

2) Application Interest Table (AIT): It is used to maintain

each applications’ interests on states as shown in Fig. 3.

State
ID

Registered
Switch IDs

State
Type

Parameter Operator
Thres
-hold

Report
Interval

Report
Detail

Interested
Applications

1 1, 3, 4, 6 CPU
Usage - ≥ 80% 0 - Load Balancing

Flow Scheduling

2 1, 3, 5
Port

Packet
Number

Port ID = 1 < 10,000 0 Packet IP
addresses

Load Balancing
Anomaly
Detection

3 2, 7, 8, 9, 10 Queue
Length Queue ID = 1 - - 30 - Flow Scheduling

Fig. 3: AIT Structure

• State ID: The controller should uniquely number states

required by applications. State ID is a consensus mark

between the application, control and data plane managed

by controller.

• Registered Switch IDs: This field records which switches

should monitor the state in this field. This field can be

set to empty if all switches need to gather this state.

• Interested Applications: This field records the applica-

tions that are interested in the state of this entry. Such

aggregation exploits the high reusability of network-level

states and will decrease table size, and shorten the time

for table lookup and state delivery to applications.

E. NeSMA APIs

In order to build network-level state-aware applications in

SDN, we design north-bound API on top of the CNSP and

south-bound API between the CNSP and DNSP. North-bound

API is mainly used for applications to register or unregister

their interests. South-bound API is mainly used for com-

munications between CNSP and DNSP, including installing

or removing SRT entries in the DNSP, configuring Default
Interval, and directly pulling states from the data plane. API

designs are elaborated as follows.

1) South-Bound API: The south-bound API mainly in-

cludes five key interfaces.

• Default Interval Configuration: This function is used to

configure state reporting interval in DNSP by CNSP to

speed up or slow down state monitoring and checking

frequency.

• SRT Entry Addition: This function is used to add entries

into SRT by CNSP during runtime. Applications call this

interface to enable some switches to monitor interesting

states.

• SRT Entry Removal: This function is used to remove

entries from switch SRT by CNSP if the state should

no longer be monitored by the switch.

• State Pulling: This interface is used to pull states from

SRT by CNSP during runtime. Applications will call this

function when they need to acknowledge current states.

Besides, CNSP could call this function regularly to keep-
alive the switches.

• State Report: This function is invoked by DNSP to report

state detection or transition to CNSP. This is the only

reaction of switches proactively or reactively.

2) North-Bound API: The north-bound API includes the

following major functions.

• Interest Registration: Applications call this interface to

register an interest for states into AIT. CNSP will decide

whether to aggregate this interest into an existing entry

or append a new entry to AIT.

• Interest Removal: An applications calls this interface to

remove its interest on a state. If there are still other appli-

cations watching this state, CNSP will simply remove this

application from Interested Applications. If not, CNSP

will remove state monitoring on all relevant switches and

delete the AIT entry.

• State Pulling: Applications call this interface to immedi-

ately get states from the data plane.

• State Delivery: This interface is called by CNSP to deliver

a state to registered applications upon receiving a state

report.

III. NETWORK-LEVEL STATE COMPOSITION

A state-aware application often needs to monitor multiple

states (e.g Packet rate, CPU usage and Memory Usage) on

the same switch. NeSMA offers two simple network-level

state composition methods for programmers to support the

monitoring of multiple states in sequential or in parallel.

A. Sequential Composition

Some applications require one state to be monitored after

the other state is detected. Take data plane flow scheduling as

an example. Hedera [7] detects elephant flows by letting the

controller pull the flow counters on switches.

However, pulling is a very heavy task. In NeSMA, switches

are able to judge elephant flows and actively report to the

controller as long as the controller tells them the threshold of

flow counters. We divide this application into two stages. (1)

Network congestion detection. The application can decide a

threshold of packet rate of switches, over which a switch is

considered as congested. Once the controller receives network

congestion report, it will inform the application. (2) Elephant

flow detection. Once the network is congested, the controller

should configure new SRT entries to detect elephant flows.

Switches will monitor the counter of all flows and report a

flow with a larger counter than the threshold. The pseudo code

of state composing of flow scheduling in NeSMA is shown as

follows.

2016 IEEE 24th International Conference on Network Protocols (ICNP)
Workshop on COntrol, Operation and appLication in SDN protocols (CoolSDN 2016)

4

1 /∗ Register interest about network congestion state ∗/
2 Function initialize ()
3 register application interest (
4 state type = CNSP.THROUGHPUT,
5 state operator = CNSP.GREATER THAN,
6 state threshold = 80% ∗ SWITCH.CAPACITY,
7 report interval = 0, /∗Trigger Report mode.∗/) ;
8

9 /∗Receive and parse states to different handlers .∗/
10 Function state parser (state id , state appear , state detail)
11 switch (state id) : {
12 case congestion state id :
13 if (state appear == true)
14 /∗Congested, enable monitoring elephant flows .∗/
15 enable monitor elephant flow (state detail) ;
16 else
17 /∗Not congested , no longer monitor elephant flows .∗/
18 remove monitor elephant flow(state detail) ;
19 break;
20 case elephant flow state id :
21 if (state appear == true)
22 /∗Elephant flow detected .∗/
23 handle elephant flow (state detail) ;
24 break;
25 }
26

27 /∗ Register interest about elephant flow state ∗/
28 Function enable monitor elephant flow (state detail) {
29 elephant flow state id = CNSP. register application interest

(
30 state type = CNSP.FLOW PACKET NUMBER,
31 state operator = CNSP.GREATER EQUAL,
32 state threshold = 10000,
33 report interval = 0, /∗Trigger Report mode.∗/) ;
34 }

B. Parallel Composition

Some applications need to monitor multiple states or differ-

ent grades of the same state at the same time. In statistical

anomaly detection [15], the application needs to maintain

ordinal measure, such CPU usage, memory usage, packet rate,

to generate a periodical profile. It needs to monitor multiple

states altogether. Thus, a parallel composition of the states is

required to support such applications.

We enable parallel composition by registering multiple

interests to CNSP at the same time. During initialization,

the application should register interests of all three states

concerned to CNSP. No matter which state is detected, the ap-

plication needs to recalculate local profile and make judgments

about the appearance of anomaly. Pseudo code of statistical

anomaly detection application is given as follows.

1 /∗ Register interest about all interesting states ∗/
2 Function initialize ()
3 register application interest (
4 state type = CNSP.CPU USAGE,
5 state operator = CNSP.GREATER THAN,
6 state threshold = 60%,
7 report interval = 30, /∗Regular Report mode.∗/) ;
8 register application interest (
9 state type = CNSP.MEMORY USAGE,

10 state operator = CNSP.GREATER THAN,
11 state threshold = 60%,
12 report interval = 30, /∗Regular Report mode.∗/) ;
13 register application interest (
14 state type = CNSP.THROUGHPUT,
15 state operator = CNSP.GREATER THAN,
16 state threshold = 60% ∗ SWITCH.CAPACITY,

17 report interval = 30, /∗Regular Report mode.∗/) ;
18

19 /∗Receive states and update local profile .∗/
20 Function state parser (state id , state appear , state detail)
21 if (state appear == true) {
22 update current profile (state id , state detail) ;
23 break;
24 }

IV. IMPLEMENTATION AND EVALUATION

A. Implementation
We extended Floodlight [5] to be NeSMA controller. We

developed the CNSP as a module application in Floodlight

(1.2K LoC) and designed AIT inside CNSP to record applica-

tion interests on states. In addition, we extended Floodlight to

support south-bound and north-bound APIs of NeSMA. Open

vSwitch (OVS) [4] was extended to support NeSMA data

plane. We appended DNSP module into OVS which maintains

SRT table and collect states according to SRT entries (2.5K

LoC). Besides, we also implemented south bound interfaces

in DNSP to receive configurations and report states. We

implemented a flow scheduling application based on NeSMA

prototype, which monitors data plane congestion and switch

availability in parallel, and steers traffic accordingly. We

realized this application using the triggered reporting mode.
We conduct our experiments based on DELL R720 servers,

the CPU of which is Xeon E5-2609 (2.4 GHz). We use

IXIA [2] tester to generate packets for our experiments.

B. Evaluation
1) NeSMA’s Impact on Forwarding Performance: In our

design, DNSP is placed outside the packet forwarding pipeline.

Theoretically, packet forwarding latency and throughput per-

formance will not be compromised by enabling NeSMA in

SDN architecture. State retrieval for CPU and memory usage

requires a simple system call for software switches. In order

to fetch states in the OpenFlow meter table, we construct

OpenFlow messages from DNSP and send them to OVS,

which could occupy little link bandwidth since all messages

are transmitted inside the switches.
We prove this by enabling and disabling simple flow

scheduling application and measuring forwarding latency and

throughput respectively. We run our experiment with the con-

troller on one server and a switch on the other server. The two

servers are directly connected. We use IXIA packet generator

to send packets whose size range from 64 bytes to 1024

bytes, and evaluated the forwarding latency and throughput

with or without NeSMA enhancement. As shown in Fig. 4,

adding NeSMA in SDN will only compromise forwarding

latency and throughput a little bit, due to the CPU cost of data

plane state collection, message formation and state reporting

in DNSP. This demonstrates the feasibility of implementing

NeSMA in SDN without much affecting data path forwarding

performance.
We further prove the low throughput overhead of NeSMA

in a Mininet [3] simulation environment based on a real-

world network topology derived from the Stanford back-

bone network [1]. We selected a three-hop forwarding path.

2016 IEEE 24th International Conference on Network Protocols (ICNP)
Workshop on COntrol, Operation and appLication in SDN protocols (CoolSDN 2016)

5

64 128 256 512 10240

50

100

150

200

Size of Packets (byte)

Fo
rw

ar
di

ng
La

te
nc

y
(μ

s)

NeSMA enabled SDN architecture
Traditional SDN architecture

(a) Forwarding Latency

64 128 256 512 1024
0

200

400

600

800

1000

1200

Size of Packets (byte)

Th
ro

ug
hp

ut
(M

bp
s)

NeSMA enabled SDN architecture
Traditional SDN architecture

(b) Throughput

Fig. 4: Packet forwarding performance with/without NeSMA

For packets of 1024 bytes, the throughput is 9.5Gbps with

NeSMA enhancement, while the throughput without NeSMA

is 9.6Gbps. This illustrates a minimal overhead introduced by

NeSMA.

2) State Reaction Latency: Based on our implementation

of flow scheduling, we evaluated the latency between the time

when a state is detected and the time when reactive policies

are installed in the data plane. We use Mininet to simulate

the Stanford backbone network architecture from Hassel. We

overload one of the switch for the controller to detect switch

congestion state. We configure the switch to check states once

every 5 seconds and adopt the Triggered Reporting Mode. In

our experiments, the average latency is approximately 142μs
between state detection and policy installment, which is rather

fast and efficient for state reaction.

In the Mininet simulation, each switch is directly connected

to the controller, which means the transmission distance is only

one hop. This might not be the case in real world network

topology. If the control packets are transmitted in-band, the

distance between the controller and switch is always more than

one hop. Thus, we additionally implement Fat-Tree [6] topol-

ogy and configure all switches to report their congestion states

to the controller. We connect all core switches to the controller,

leaving the control packets of other switches transmitted in-

band. Thus, the distance from core layer, aggregate layer and

edge layer switches to the controller is 1, 2, 3 respectively. In

0 4 8 12 16 20 24
0

5

10

15

20

25

Hours (h)

St
at

e
Tr

af
fic

 (
M

B
)

FatTree(2)
FatTree(4)
FatTree(8)
FatTree(16)

(a) Regular reporting by switches

0 4 8 12 16 20 24
0

10

20

30

40

Hours (h)

St
at

e
Tr

af
fic

 (
M

B)

FatTree(2)
FatTree(4)
FatTree(8)
FatTree(16)

(b) Proactive pulling by the controller

Fig. 5: State related traffic amount in 24 hours

this structure, we can calculate that the average hops from the

switches to the controller is:

average distance =
1 ∗ (k2/4) + 2 ∗ (k2/2) + 3 ∗ (k2/2)

h2/4 + k2/2 + k2/2

= 11/5 ≈ 2

Above result shows that in Fat-Tree topology, average

distance from the controller to a switch is approximately 2
hops, which will add only a little bit to the 142μs latency.

3) Network Resource Occupation and Scalability: The scal-

ability of NeSMA comes from the little resource occupation

of state transmitting. According to NeSMA design, the size of

an NeSMA state report message is 25 bytes. We configure all

switches to report state in the relatively resource-consuming

Regular Report mode, and Controller pulling mode once every

30 seconds. We use Mininet to simulate Fat-Tree Topology

with different number of switches and run the simulation for

24 hours. Experimental results are shown in Fig. 5. Only 23M

bytes of state traffic is generated during 24 hours for a FatTree

(16) network with 320 switches in Regular Report mode, and

32M bytes of traffic generated in Proactive pulling mode.

Extra traffic in Proactive Pulling mode is incurred by the

packets requesting states from the switches. In more common

cases, Triggered Report mode will be implemented and incurs

2016 IEEE 24th International Conference on Network Protocols (ICNP)
Workshop on COntrol, Operation and appLication in SDN protocols (CoolSDN 2016)

6

much less state traffic, which can be acceptable in large scale

networks.

V. RELATED WORK

Some research efforts have recently been devoted to adding

state into OpenFlow data plane. Bianchi et al. [8] proposed

a new abstraction to formally describe a desired stateful

processing of flows inside SDN data plane based on eXtended

Finite State Machines (XFSM). Moshref et al. [14] proposed

FAST (Flow-level State Transitions) as a new switch primitive

for SDN. Zhu et al. [22] propose a stateful abstraction for SDN

data plane. All above works propose to add states to SDN.

However, they mainly focus on flow-level states while ignoring

equally general and complex network-level states. We propose

NeSMA to support network-level state-aware applications to

enrich application categories supported by OpenFlow.

Many advanced applications concerning network-level

states have been proposed for better network performance

and management [7], [11], [15], [18], [20]. Zhang et al. [20]

propose a fast reroute mechanism to calculate the backup

next hop of each prefix and directly re-route the packet when

link failure happens. Animesh Patcha et al. [15] summarize

current network anomaly detection mechanisms that all gather

network-level states and exert statistical or machine learning

processing. However, these works are constrained to support

some specific states, while NeSMA provides a more general

and effective mechanism to support network-level states based

on the SDN central control to collect and deliver states to

applications.

Some protocols for switch management including NET-

CONF [10], OVSDB [16] and OF-Config can monitor and

configure switches during runtime. However, they could not

monitor some resource and performance states of switches,

and still suffer from untimely response caused by controller

initiated control actions. The OpenFlow 1.5 specification pro-

posed triggered report mode in Appendix B. 18.4. However,

this field is restricted to flow level counters and cannot be

configured to support network level states. To the best of our

knowledge, our work is the first one on enabling network-level

state-aware applications in SDN architecture.

VI. CONCLUSION

In this paper, we have proposed a new architecture NeSMA

for building network-level state-aware applications in SDN.

We have presented the detailed design of NeSMA including

control and data plane extensions and APIs. We have im-

plemented a prototype of NeSMA on Floodlight and Open

vSwitch. Our experiment results shows that NeSMA can sup-

port network-level state-aware applications with low network

resource consumption and high scalability, and could maintain

forwarding performance. In the future, we will explore more

fine-grained states in NeSMA and leverage those states to

support more advanced state-aware applications. We will also

investigate the possibility of hardware-based implementation

of NeSMA. Besides, different state retrieval may exert differ-

ent impact on switch resource occupation. Therefore, we will

further evaluate the influence of each state type retrieval on

forwarding performance.

VII. ACKNOWLEDGEMENT

This research is supported by the National Natural Science

Foundation of China (No.61472213 and No.61502267). Jun

Bi is the corresponding author.

REFERENCES

[1] Header space library:
https://bitbucket.org/peymank/hassel-public.

[2] Ixia: http://www.ixiacom.cn/.
[3] Mininet: http://mininet.org/.
[4] Open vswitch: http://openvswitch.org/.
[5] Project floodlight:

http://www.projectfloodlight.org/floodlight/.
[6] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A

scalable, commodity data center network architecture. ACM SIGCOMM
Computer Communication Review, 38(4):63–74, 2008.

[7] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan,
Nelson Huang, and Amin Vahdat. Hedera: Dynamic flow scheduling
for data center networks. In NSDI, volume 10, pages 19–19, 2010.

[8] Giuseppe Bianchi, Marco Bonola, Antonio Capone, and Carmelo Cas-
cone. Openstate: programming platform-independent stateful openflow
applications inside the switch. ACM SIGCOMM Computer Communi-
cation Review, 44(2):44–51, 2014.

[9] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKe-
own, Martin Izzard, Fernando Mujica, and Mark Horowitz. Forwarding
metamorphosis: Fast programmable match-action processing in hard-
ware for SDN. In Proceedings of the ACM SIGCOMM 2013 conference
(SIGCOMM’13). ACM, 2013.

[10] Rob Enns. Netconf configuration protocol. 2006.
[11] Rohan Gandhi, Hongqiang Harry Liu, Y Charlie Hu, Guohan Lu,

Jitendra Padhye, Lihua Yuan, and Ming Zhang. Duet: cloud scale load
balancing with hardware and software. In Proceedings of the 2014 ACM
conference on SIGCOMM, pages 27–38. ACM, 2014.

[12] Vimalkumar Jeyakumar, Mohammad Alizadeh, Changhoon Kim, and
David Mazieres. Tiny packet programs for low-latency network control
and monitoring. In Proceedings of the Twelfth ACM Workshop on Hot
Topics in Networks (HotNets’13). ACM, 2013.

[13] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review, 38(2):69–74, 2008.

[14] Masoud Moshref, Apoorv Bhargava, Adhip Gupta, Minlan Yu, and
Ramesh Govindan. Flow-level state transition as a new switch primitive
for sdn. In Proceedings of ACM SIGCOMM Workshop on Hot Topics
in Software Defined Networking (HotSDN’14), 2014.

[15] Animesh Patcha and Jung-Min Park. An overview of anomaly detection
techniques: Existing solutions and latest technological trends. Computer
networks, 51(12):3448–3470, 2007.

[16] B Pfaff and B Davie. The open v protocol, draft-pfaff-ovsdb-proto-01,
2013.

[17] Fabio Soldo and Ahmed Metwally. Traffic anomaly detection based on
the ip size distribution. Proceedings - IEEE INFOCOM, 131(5):2005 –
2013, 2012.

[18] Fabio Soldo and Ahmed Metwally. Traffic anomaly detection based on
the ip size distribution. In INFOCOM, 2012 Proceedings IEEE, pages
2005–2013. IEEE, 2012.

[19] CHANDOLA Varun, BANERJEE Arindam, and KUMAR Vipin.
Anomaly detection: A survey. Acm Computing Surveys, 2009.

[20] Baobao Zhang, Jianping Wu, and Jun Bi. Rpfp: Ip fast reroute with
providing complete protection and without using tunnels. In Quality of
Service (IWQoS), 2013 IEEE/ACM 21st International Symposium on,
pages 1–10. IEEE, 2013.

[21] Shuyong Zhu, Jun Bi, and Chen Sun. Sfa: Stateful forwarding abstrac-
tion in sdn data plane. USENIX/Open Networking Summit Research
Track (ONS’2014).

[22] Shuyong Zhu, Jun Bi, Chen Sun, Chenhui Wu, and Hongxin Hu. Sdpa:
Enhancing stateful forwarding for software-defined networking. In 2015
IEEE 23rd International Conference on Network Protocols (ICNP),
pages 323–333. IEEE, 2015.

2016 IEEE 24th International Conference on Network Protocols (ICNP)
Workshop on COntrol, Operation and appLication in SDN protocols (CoolSDN 2016)

7

