
Newton: Intent-Driven Network Traffic Monitoring

Yu Zhou†§, Dai Zhang†, Kai Gao★, Chen Sun§, Jiamin Cao†,
Yangyang Wang†, Mingwei Xu†, Jianping Wu†

†Institute for Network Sciences and Cyberspace, BNRist, Tsinghua University
§Alibaba Group ★Sichuan University

ABSTRACT

Monitoring network traffic based on operators’ intents is essen-

tial to today’s networks. As the bandwidth and size of networks

increase steeply, monitoring systems shall fulfill the requirements

of on-demand network monitoring for ever-growing traffic vol-

umes. However, existing monitoring systems either cannot satisfy

operators’ intents on demand or introduce substantial monitoring

overheads. In this paper, we present Newton, an intent-driven traffic

monitor that enables specifying operators’ intents with traffic mon-

itoring queries and supports dynamic and scalable network-wide

queries. Specifically, Newton 1) empowers operators to dynami-

cally create, remove, and update on-data-plane queries without

interrupting normal packet forwarding, 2) conducts systematic op-

timizations to achieve precise network traffic monitoring, and 3)

executes network-wide queries with high resilience to dynamic

network status. Evaluation results show that Newton improves the

flexibility, scalability, and resource efficiency of traffic monitor-

ing, demonstrating its great potential to be deployed in large-scale

programmable networks.

CCS CONCEPTS

•Networks→Networkmonitoring;Programmable networks.

KEYWORDS

Network traffic monitoring, programmable switch, P4

ACM Reference Format:

Yu Zhou, Dai Zhang, Kai Gao, Jiamin Cao, Yangyang Wang, Mingwei Xu,

Jianping Wu. 2020. Newton: Intent-Driven Network Traffic Monitoring .

In The 16th International Conference on emerging Networking EXperiments

and Technologies (CoNEXT ’20), December 1–4, 2020, Barcelona, Spain. ACM,

New York, NY, USA, 14 pages. https://doi.org/10.1145/3386367.3431298

1 INTRODUCTION

Traffic monitoring plays a key role in a variety of network opera-

tion tasks. Network operators need to capture heavy-hitter flows

for traffic engineering to maximize bandwidth utilization [1, 2]

and track abnormal traffic changes to detect attacks [3, 4] or to

troubleshoot failures [5, 6]. Traditional traffic monitoring systems,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7948-9/20/12. . . $15.00
https://doi.org/10.1145/3386367.3431298

e.g. sFlow [7] and NetFlow [8], provide coarse-grained monitoring

information, which cannot satisfy operators’ intents.

The current advance of programmable switches [9–12] opens

new opportunities to monitor traffic based on operators’ intents.

Operators can implement traffic monitoring intents with domain-

specific programming languages, such as and NPL [12], POF [13],

and P4 [14], and then run programs that realize intents on data

planes at line rate. The above procedure is referred to as intent-

driven traffic monitoring. Owing to increased network scale and

device bandwidth as well as operation demands on fine-grained

monitoring data, building an efficient traffic monitoring system

shall satisfy two fundamental requirements.

• 1. Deploy traffic monitoring intents on demand without

disturbing normal packet forwarding. As operators need to

deploy new monitoring intents continuously in running net-

works, monitoring systems shall support dynamic installation

of new monitoring tasks. Furthermore, operation requirements

change over time [15–18], which drives continuous update of

monitoring intents. For example, operators need to update moni-

toring tasks to drill down into sources of anomaly traffic when

detecting DDoS attacks. Thus, monitoring systems should sup-

port dynamic operations (e.g. update and remove) of monitoring

tasks to ensure reactiveness to network events and evolved in-

tents. The premise of supporting on-demand monitoring intents

lies in not disturbing normal packet forwarding, including con-

nectivity and forwarding performance.

• 2. Makemonitoring overheads low for scalability. Monitor-

ing overheads, including bandwidth for data transmission and

CPU cores for analysis [19–21], should not increase severely as

network sizes and traffic volume increase. Because large band-

width consumption could impede the performance of normal

traffic, and large CPU consumption could incur capital and oper-

ation investment.

Unfortunately, existing intent-driven traffic monitoring systems

cannot satisfy the above requirements simultaneously. First of all,

Sonata [19] and Marple [22] abstract networks as a database. They

specify operators’ intents by traffic monitoring queries (e.g. based

on SQL and Spark API [23]) over the database and load queries into

switches as the form of P4 programs. Then, the switches export

exact information required by intents with small overheads. But

Sonata and Marple only support static operations of monitoring

tasks, and updating queries needs to reboot switches, which makes

switches halt for seconds. Second, TurboFlow [24] and *Flow [17]

execute queries on software analyzers to provide on-demand moni-

toring intents and aggregate monitoring information on data planes.

But their monitoring overheads increase fast with network sizes

and traffic volume, restricting the scalability.

295

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Yu Zhou et al.

This paper proposes Newton, an intent-driven NEtWork Traffic

mONitoring system. Newton uses a widely-used high-level query

API, Spark API [23] (alike Sonata [19]), to express traffic moni-

toring intents and compiles the queries to switch configurations,

which frees operators from trivial underlying implementations. On

data planes, Newton’s queries perform accurate monitoring data

exportation for high scalability and can be dynamically and safely

reconfigured. On control planes, a centralized controller compiles

and deploys queries. As for Newton’s realization, we shall address

three challenges.

The first challenge is to realize a variety of queries on pro-

grammability limited data planes. A query could consist of var-

ious primitives (e.g. map, reduce, and filter) and parameters [25].

On-demand query operations require great flexibility of query re-

configuration, which is hard for data planes. Existing data plane vir-

tualization proposals [26–28] provision such flexibility but severely

compromise performance. We observe that the query primitives

share a common set of processing steps, including selecting opera-

tion keys, calculating hash values, conducting state transitions, and

processing state results. Based on the observation, Newton proposes

to decompose query primitives into four basic modules, each imple-

menting one processing step. Moreover, the modules are designed

with runtime reconfigurability, so that Newton can use table rules to

configure their behaviors and to construct query primitives dynam-

ically. Based on query primitive decomposition and reconfigurable

modules, Newton achieves good generality with no performance

penalty for on-demand data plane queries.

The second challenge is to provide accurate query results

with limited hardware resources. Data planes have limited re-

sources (e.g. stages and SRAM) and might not be able to accommo-

date multiple queries or even one complex query [19]. Moreover,

the accuracy of stateful query primitives (i.e. reduce and distinct) de-

pends on the amount of available stateful memory.Newton proposes

several optimizations to alleviate the limitation. First, Newton opti-

mizes module layout on data planes to improve resource utilization.

Second, Newton proposes an effective query compilation algorithm

for reducing the query resource consumption. Third, Newton intro-

duces cross-switch query execution that enables queries to utilize

resources across switches with small bandwidth overheads.

The last challenge is to runnetwork-wide queries in the pres-

ence of network dynamics. The centralized controller should

guarantee that monitoring queries are deployed on the forwarding

paths of target traffic. Moreover, the controller should timely re-

sponse to network dynamics, such as failures, which can change

the traffic forwarding paths. Whereas, detecting network dynamics

itself is a hard problem that can take a long time, let alone deter-

mining the affected traffic and the corresponding forwarding paths.

The cross-switch query execution in Newton further adds up the

difficulty, as one query could run in different switches. To overcome

this challenge, we propose a resilient query placement algorithm

that redundantly places queries into switches along all the possible

paths. Meanwhile, the algorithm multiplexes table rules, which

ensures that redundant queries do not introduce unacceptable over-

heads. With the query placement algorithm, Newton queries own

great resilience to network dynamics with moderate data plane

resource consumption.

Newton can be readily deployed on P4-programmable switches.

We build a prototype of Newton and implement 9 queries upon the

prototype. We evaluate Newton with real-world packet traces and

Tofino switches [11]. Evaluation results shows thatNewton supports

flexible query operations which can be completed within dozens

of milliseconds without disturbing packet forwarding. Moreover,

Newton reduces monitoring overheads by two orders of magnitude

when compared with TurboFlow [24] and *Flow [17]. For all the

queries, Newton reduces module usage by over 42.4% and stage

usage by over 69.7%.

2 BACKGROUND AND MOTIVATION

2.1 Background

In this section, we briefly introduce the background on traffic mon-

itoring queries and programmable data planes .

Trafficmonitoring intents andqueries. Trafficmonitoring plays

a key role in network operation [5, 29, 30]. There can be various

traffic monitoring intents, such as getting the IP addresses of the

victim hosts under DDoS attacks and capturing the top-100 flows

that contribute to most of the traffic. Existing network monitoring

systems support specifying operators’ intents as traffic monitoring

queries which are composed of various primitives. In this paper,

we adopt four widely-used stream processing primitives, including

filter, map, distinct, and reduce, which are also used by Sonata [19]

to develop network monitoring queries.

Programmable data planes [9–11] enable operators to flexibly

customize their networks according to ever-changing operation

requirements. There are three reconfigurable components on pro-

grammable data planes. The first one is match-action table whose

matching fields and actions can be programmed. The second is state-

ful memory (i.e. registers and counters) that stores states and sup-

ports line-rate transactional ALU [31]. The last is control flow that

composes the above two components in a switch pipeline. P4 [14], a

domain-specific language, facilitates programming the above com-

ponents. Resources on programmable data planes are evenly sliced

into physical stages, each of which can support a amount of concur-

rent tables and stateful memory. Programmable data planes have

enlightened many perspectives of network researching [32–40],

especially for network monitoring [19–22, 41–46].

Reconfigurable data planes. There are two types of data plane

reconfigurability. The first type is non-runtime reconfigurability,

referring to the data plane configurations that cannot be done at

runtime. P4 belongs to the first type, and reloading P4 programs

needs to reboot running switches and to interrupt normal packet

forwarding. The second is runtime reconfigurability. Match-action

table rules belong to the second type, and operators can update

table rules in running switches. Achieving on-demand monitoring

queries needs runtime reconfigurability, which has two approaches.

The first approach is to develop a proprietary ASIC module dedi-

cated to trafficmonitoring operations. The representative technique

is BroadScan [47, 48] in Broadcom’s BCM56275 chip. The second

approach is to leverage general match-action tables to build a traffic

monitoringmodule with runtime reconfigurability.Newton explores

the second approach for good portability and little coupling with

specific ASIC implementations.

296

Newton CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

2.2 Related Works

Networkmonitoring on programmable switches. As switches

are becoming open and programmable, more and more powerful

network monitoring systems are developed for specific purposes.

FlowRadar [20] and LossRadar [21] provide network-wide per-flow

counters or packet loss statistics. HashPipe [43] is an efficient data

structure to detect large flows entirely on data planes. ElasticS-

ketch [41] employs memory-efficient sketches to support rich traffic

monitoring metrics, e.g. heavy hitters and entropy. HyperSight [46]

detect abnormal packet behaviors. BeauCoup [49] supports count-

ing distinct items among related packets. Orthogonal to the above

proposals, Newton provides a general-purpose system for a variety

of traffic monitoring intents.

On-data-plane traffic monitoring queries. Motivated by ever-

changing operators’ demands on network monitoring, Marple [22]

proposes query-based data plane monitoring. Operators can spec-

ify their network monitoring intents with a high-level language,

then Marple compiles queries into switches pipelines, enabling a

language-directed hardware design. Sonata [19] integrates switch-

ing ASIC and CPU to jointly realize monitoring queries. Sonata

dynamically refines the traffic monitoring scope for better accuracy

but still falls short of supporting dynamic query operations, such

as installing a new query.

Dynamic traffic monitoring queries. To overcome problems in-

curred by on-data-plane monitoring queries, *Flow [17] and Tur-

boFlow [24] propose dynamic monitoring queries. Their insight

is to export generic data (grouped packet vectors for *Flow and

flow records for TurboFlow) from data planes to CPU-based ana-

lyzers and to perform query logic on software. However, both of

them lead to too much monitoring traffic and require a consider-

able amount of CPU cores for data analysis when networks scale

out. Newton explores a different direction, i.e. running dynamic

monitoring queries directly on data planes. Compared with *Flow

and TurboFlow, Newton implements query logic on data planes to

minimize monitoring overheads.

3 OVERVIEW OF NEWTON

Architecture. Figure 1 shows the architecture of Newton. First,

centralized Newton controller compiles queries that are developed

with stream processing API. Unlike existing intent-driven traffic

monitoring systems, the controller only generates table rules for

Newton modules to implement different queries. On data planes,

the switch pipeline could have multiple suites of Newton modules.

Workflow. The overall workflow of Newton is consistent with

the top-down network telemetry paradigm [50]. At the initializa-

tion time, operators should add Newton module layout into the P4

program (§4.1 and §4.2), and load the P4 program into the switch

pipeline. At runtime, operators realize their intents with the query

API. Next, based on query rule composition (§4.3), Newton con-

troller compiles queries into table rules instead of P4 programs,

which differs from Sonata and Marple. Then, Newton controller

installs query rules in appropriate switches according to resilient

rule placement (§5.2). After rule installation, queries can run in

switches jointly (§5.1) and export traffic monitoring data according

to operators’ intents.

Figure 1: Architecture ofNewton. The blue boxes identify the

contributions of Newton.

3.1 Design Goals of Newton

Newton is an intent-driven network traffic monitoring system that

possesses the four design goals.

On-demand monitoring queries. As new monitoring require-

ments continuously arise, operators should be able to install new

queries into running switches. For example, operators might create

queries to zoom on the anomalous traffic [15, 16]. Furthermore,

as network status (e.g. failures) and traffic characteristics change

over time, the running queries should be updated accordingly [17].

Besides, cloud providers could offer network monitoring as ser-

vices for tenants, such as Amazon CloudWatch [18] and Google

Andromeda [51], which requires on-demand query provisioning.

Thus, supporting on-demand monitoring queries is essential to

ever-increasing network operation demands.

On-data-planemonitoring queries. Monitoring queries can run

either on CPU cores or data planes. For on-CPU monitoring queries,

monitoring data should be transmitted from data planes to CPU

for further analysis. For scalability, on-CPU queries must keep the

overheads of data transmission and processing under control when

networks scale out. First, some systems reduce overheads by export-

ing coarse-grained monitoring data from data planes via sampling

or filtering [5, 8], but they fail operators’ monitoring intents due

to lack of fine-grained data. Second, some systems export full data

of all packets and reduce overheads via compression [52] or aggre-

gation [17, 24]. Whereas, overheads of full data exportation grow

proportionally with network sizes and traffic volume. For exam-

ple, *Flow needs 8 CPU cores to fully process data from a 640Gbps

switch [17] . For a network with 1K switches, *Flow requires at least

8,000 CPU cores for monitoring. Therefore, alike Sonata [19] and

Marple [22], Newton adopts on-data-plane queries and only exports

desired data to satisfy operators’ intents with high scalability. As

presented in §6.1, on-data-plane queries can reduce overheads by

over two orders of magnitude.

297

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Yu Zhou et al.

Figure 2: Design of key selection, hash calculation, state bank, and result process.

Resource-efficientmonitoring queries. Due to space and power

constraints of ASIC, data planes are inevitably limited in resources.

As data plane resources determine the capability of supporting

complex queries and the precision of monitoring results, optimizing

resource usage is of great importance. Newton effectively optimizes

resource of monitoring queries via the compact module layout,

module rule composition, and cross-switch.query execution.

Network-wide monitoring queries. When considering a net-

work, queries must be deployed on forwarding paths of the moni-

tored traffic to provide complete network-wide monitoring results.

Existing systems concentrate on device-level monitoring and do

not consider network-wide monitoring queries. Newton provides an

efficient solution for deploying network-wide monitoring queries

with strong resilience to network dynamics.

Table 1 summarizes the design goals and corresponding tech-

niques of Newton. Next, we will present how to run Newton at

device level (§4) and how to deploy Newton at network-wide (§5)

respectively.

4 QUERIES AT DEVICE LEVEL

This section introduces on-demand traffic monitoring queries in

Newton, and concentrates on the following two problems: how to

make monitoring queries dynamically reconfigurable without disturb-

ing other functions (§4.1), and how to fully utilize limited data plane

resources during the initialization time (§4.2) and the runtime (§4.3).

4.1 Query Primitive Decomposition

Newton supports on-demand monitoring queries and makes four

query primitives reconfigurable, including map, filter, reduce, and

distinct. Newton focuses on the four primitives because they can

satisfy a wide range of significant monitoring intents, as revealed

by Sonata [19]. To reconcile the programmability of switching ASIC

and the complexity of query primitives, we come up with two ideas.

Design Goals Techniques

On-demand
Query primitive decomposition §4.1

On-data-plane

Resource-efficient

Compact module layout §4.2

Module rule composition §4.3

Cross-switch query execution §5.1

Network-wide Resilient module rule placement §5.2

Table 1: Summary of Newton designs.

Figure 3: Query primitive rules. Primitives belonging to dif-

ferent queries can share the same module. Note that reduce

could leverage several module suites to implement a multi-

array CM.

• Modular decomposition of query primitives. The query prim-

itives share a similar set of processing steps. For example, most

primitives select some header fields from a global header fields

set, and the stateful primitives do atomic operations on registers.

Based on the similarity, we realize the common processing steps

with four modules: field selection, hash calculation, state bank, and

result process. In Newton, a module is composed of corresponding

P4 tables, table rules, registers and control flow logic.

• Reconfigurable modules. Query reconfigurability requires up-

dating query logic via changing table rules instead of modifying

P4 programs. Due to the diversity of primitives and primitive

parameters, it is non-trivial to achieve the goal. As we decom-

pose query primitives into a set of modules whose logic is simple

enough to be configured by rules, we propose to make the mod-

ules reconfigurable.

Next, we introduce the four modules shown in Figure 2 and show

how they compose the query primitives.

Key selection (K). The first step of most query primitives is to

select a set of header fields as the operation keys for subsequent

steps. Thus, we design K to attain operation keys. K takes a list of

global fields as input. Due to the hardness of doing list operations

(e.g. add or remove an element) on programmable data planes, we

choose the bit-mask action, i.e. &, to conceal unneeded fields (e.g.

dip in Figure 2). Furthermore, the bit-mask action could support

flexible logic, e.g. getting the IP prefix and discretizing the delay.

Hash calculation (H).H conducts hash actions over the operation

keys to generate a hash result. The reconfigurable elements of H

includes the hash algorithms as well as the range of the hash result.

Then, the hash result can be used as the register index in the next

step. Besides, H supports the direct mode. Under this mode, H di-

rectly uses a key as the hash result. Whereas, the direct mode comes

298

Newton CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

at the cost of additional compound actions whose number is pro-

portional to the number of global fields. Fortunately, programmable

switches have sufficient VLIW [9] to meet such requirement.

State bank (S). Newton adopts the sketch-based implementation of

stateful primitives, e.g. using Bloom Filter (BF) [53] for distinct and

Count-Min Sketch (CM) [54] for the sum function of reduce. We

propose S to realize stateful primitives. S comprises two parts, i.e.

a register array and stateful ALUs that can be executed over each

register. As shown in Figure 2, Newton supports four types of ALU.

As BF needs | and CM needs +, the supported ALUs are sufficient. S

uses the hash result as the register index and supports configuring

the ALU to be executed over the registers. Furthermore, with the

adjustable range of the hash result, S supports flexible register

allocation among different queries. S outputs the state result of

stateful ALUs. Furthermore, S can also output the hash result as

the state result.

Result process (R). We provide R for processing the state result

from S. R conducts ternary matching over the state result and sup-

ports three types of operations, as shown in Figure 2. The first one

is report that uploads the metadata set to analyzers via mirroring.

The second one executes some ALUs, e.g. + and -, over the result

and passes the result to the next step. We can flexibly reconfigure

the matching range and the actions to be executed.

The above modules can jointly compose query primitives, and

Figure 3 shows how to compile query primitives into module rules.

Take filter(pkt.srcUdpPort==53) as an example. First, Newton config-

ures K to select the source UDP port (as shown in Figure 2). Then,

Newton uses H to set the result to be the UDP port and uses S to

transmit the hash results to the state result. Next, R matches the

state result. If the state result is 53, R continues. Otherwise, R stops

the query. Besides, Table 3 (§6.2) presents resource consumption of

the four modules and the composed primitives respectively.

Concurrency. As shown in Figure 3, Newton multiplexes mod-

ules among multiple concurrent queries. Different queries might

monitor the same traffic or different traffic. Newton chains the

queries monitoring the same traffic. For the queries monitoring

different traffic, we introduce a 𝑛𝑒𝑤𝑡𝑜𝑛_𝑖𝑛𝑖𝑡 table that conducts
ternary matching on 5-tuple (including two IP addresses, a protocol

type, and two TCP/UDP ports) and TCP control flag to classify and

dispatch traffic for concurrent queries. The capacity of Newton for

supporting concurrent queries is determined by both available data

plane resources (including the table size of all modules and the

register memory size of S) and monitoring intents (including the

query rule number and register memory consumption).

Expressibility. Newton has the same expressibility of Sonata [19]

but supports dynamic query operations. To be exact, all Sonata

queries can be re-implemented with Newton’s decomposed query

primitives. For the query primitives that are beyond the capability

of data planes, Newton shares the same insight with Sonata and

lets them run on CPU. Note that query primitive decomposition

comes with additional costs, because it consumes more data plane

resources, i.e. mainly tables and stages. Next, we will demonstrate

how to optimize query primitive decomposition during the initial-

ization time and the runtime to render the resource usage of Newton

comparable to Sonata.

Figure 4: Module dependencies. The blue block denotes

there exists write-read dependency between the two mod-

ules. The blocks with crosses denote the two modules are

placed in the same stage in the compact module layout.

4.2 Compact Module Layout

Newton optimizes the resource used by traffic monitoring queries

in two aspects. First, Newton improves the utilization of data plane

resources by designing a compact module layout while complying

with module dependencies. The module layout refers to how to

place modules in P4 pipeline and is loaded into P4 pipeline during

the initialization time. The module layout of Newton should be

compact and accommodate as many modules as possible in the

switch pipeline. Second, Newton optimizes the resource consumption

of queries by optimizing the query compilation to reduce the number

of used modules during the runtime. Next, this part will introduce

the first dimension, while the other one is at §4.3.

Module dependencies. Each Newton module takes up one table

that can be accommodated by one physical stage, and different

modules occupy different types of resources. For example, S oc-

cupies SRAM mainly, while H occupies Hash functions. Besides,

modules have write-read dependencies. For example, H read the

operation keys whose values are written by S. Modules with write-

read dependencies are inherently prevented from being placed in

the stages [55], and the left part of Table 4 presents module depen-

dencies in Newton. Then, to fully utilize all types of resources in

each stage, Newton should have a compact module layout.

Compactmodule layout. A naïvemodule layout is to sequentially

place one module per stage in P4 pipeline. The naïve module layout

yields low resource utilization. For example, S could only use 25%

registers of P4 pipeline at most.

We design a compact module layout shown in Figure 5 to fully

utilize all types of resources on each stage. However, module depen-

dencies hinder placing all the four modules in the same stage, like

Stage 4 in Figure 5. To address this problem, we propose to eliminate

module dependencies. We design two independent metadata sets and

two sets of modules that use different metadata sets. For example,

red K outputs to the hash result of the second set. Thus, modules

using the two sets can be placed in the same stage. The right part of

Figure 4 shows the dependencies for the two sets of modules. More-

over, red modules and blue modules are not isolated completely.

We use a new field named as the global result and extend R to

match and update the global result. In essence, the compact module

layout improves the utilization of other resources at the cost of

accommodating an additional metadata set and the global result

299

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Yu Zhou et al.

Figure 5: Compact module layout. Arrows denote queries

can continue to execute the next module after the current

one. A metadata set is composed of operation keys, a hash

result, and a state result.

with PHV [9]. Table 3 presents the comparison between the naïve

module layout and the compact module layout. The compact mod-

ule layout enables queries to use more data plane resources than

the naïve module layout with the same stage number. Besides, the

compact module layout brings new chances for optimizing query

compilation (see §4.3).

4.3 Module Rule Composition

Compiling queries in Newton involves two steps. The first step is to

compile each query primitive into the rules of each module. Newton

uses one or several suites of modules to realize query primitives,

and Figure 3 shows an example for two query primitives. In this

section, we focus on the second step,module rule composition, which

is about how to place module rules belonging to the same query in

the compact module layout.

An intuitive module composition approach is to simply chain

modules according to the primitive sequence in the query. For the

example query shown in Figure 6, the intuitive approach occupies

up to 20 modules and 20 stages. Thus, the approach comes with

a flaw: requiring a large number of tables and stages which pro-

grammable switches cannot afford (e.g. Tofino has 12 stages per

pipeline [56]). To reduce tables and stages consumed by queries,

we optimize module rule composition with the following designs.

Opt.1: Replacing front filters with newton_init. Newton em-

ploys 𝑛𝑒𝑤𝑡𝑜𝑛_𝑖𝑛𝑖𝑡 (see §4.1) to dispatch traffic for different queries.
We observe that many queries first execute filter, which uses five

tuples and TCP control flag to extract the concerned traffic, which

is functionally similar to 𝑛𝑒𝑤𝑡𝑜𝑛_𝑖𝑛𝑖𝑡 . To be exact, 𝑛𝑒𝑤𝑡𝑜𝑛_𝑖𝑛𝑖𝑡 can
equally express the logic of some filter primitives in the front of

queries. Thus, we can replace filters with 𝑛𝑒𝑤𝑡𝑜𝑛_𝑖𝑛𝑖𝑡 . As shown in
§6.4, we can perform front filter replacement for 8 out of 9 queries.

Opt.2: Removing unneeded modules. We can optimize module

rule composition via removing the two types of unneeded mod-

ules. The first one is for unused modules. Some primitives have

particular settings that some modules of them are unused. For in-

stance, map(pkt=>pkt.dip) only needs K, while the other modules

are unused and can be removed without violating the correctness.

The second one is for redundant modules. Contiguous primitives

might have the same operation keys. Thus, they have the same

configuration for K, and K is redundant, as selected fields can be

Algorithm 1: Module composition algorithm

Input: A module list (𝐿𝑀) and a primitive list (𝐿𝑃)
Output:Module composition for each stage (C)

1 𝐿′𝑀 ← [];

2 𝜃 ← 𝑛𝑜𝑛𝑒 ;

3 Replace the front filters with 𝑛𝑒𝑤𝑡𝑜𝑛_𝑖𝑛𝑖𝑡 if they rely on five

tuples and TCP flag to classify traffic ; /* Opt.1 */

4 foreach𝑚 in 𝐿𝑀 do

5 if𝑚.is_used() then

6 if 𝑚 is K and𝑚.oper_keys ≠ 𝜃 then

7 𝜃 ←𝑚.oper_keys;

8 𝐿′𝑀 .append(m) ; /* Opt.2 */

9 else if𝑚 is not K then

10 𝐿′𝑀 .append(m); ; /* Opt.2 */

11 𝜃1, 𝜃2, 𝑝
′ ← 𝑛𝑜𝑛𝑒, 𝑛𝑜𝑛𝑒, 𝑛𝑜𝑛𝑒 ;

12 foreach 𝑝 𝑖𝑛 𝐿𝑃 do

13 Remove all𝑚 from 𝑝.𝑚𝑜𝑑𝑢𝑙𝑒𝑠 when𝑚 ∉ 𝐿′𝑀 ;

14 if 𝑝′ ≠ none and p’.label = 1 then

15 if 𝑝.𝑜𝑝𝑒𝑟_𝑘𝑒𝑦𝑠 ≠ 𝜃2 then

16 Restore K for 𝑝 if removed;

17 𝜃2 ← 𝑝.𝑜𝑝𝑒𝑟_𝑘𝑒𝑦𝑠 ;

18 𝑝.𝑙𝑎𝑏𝑒𝑙 ← 2 ; /* Opt.3 */

19 else

20 if 𝑝.𝑜𝑝𝑒𝑟_𝑘𝑒𝑦𝑠 ≠ 𝜃1 then

21 Restore K for 𝑝 if removed;

22 𝜃1 ← 𝑝.𝑜𝑝𝑒𝑟_𝑘𝑒𝑦𝑠 ;

23 𝑝.𝑙𝑎𝑏𝑒𝑙 ← 1 ; /* Opt.3 */

24 𝑝′ ← 𝑝 ;

25 C ← []; 𝑠 ← 1;

26 while ∃𝑥 ∈ 𝐿′𝑀 , 𝑥 𝑖𝑠 𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 do

27 S ← [];

28 foreach 𝑝 𝑖𝑛 𝐿𝑃 do

29 𝑚 ← the first unassigned module of 𝑝 ;

30 if !(stage 𝑠 cannot accommodate𝑚

31 or S contains 𝑝.𝑚𝑜𝑑𝑢𝑙𝑒𝑠 [0]

32 or dependencies of𝑚 are satisfied) then

33 S.append(𝑚);

34 Label m as assigned;

35 𝑠 ← 𝑠 + 1;

36 C.append(S) ; /* module composition */

passed to the subsequent module. For instance, map(pkt=>pkt.dip)

and reduce(keys=(pkt.dip),f=sum) have the same operation keys. We

only need one K for the two primitives.

Opt.3: Composing module rules horizontally and vertically.

Until now, Newton composes module rules ‘horizontally’, i.e. ex-

ecuting modules sequentially. In this case, Newton only uses one

module per stage and still needs a large number of stages. Consider-

ing Newton’s module layout and two separate result sets, we try to

compose modules ‘vertically’ to further optimize the stage number.

In the vertical module composition, we implement contiguous prim-

itives with the modules that use different result sets. Thus, modules

300

Newton CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

Figure 6: Module rule composition for finding SYN flooding victims [19]. The modules sur-

rounded by rectangles are allocated to accommodate query primitive rules.

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

0 20 40 60 80 100
Reduction Ratio (%)

 Stage Reduction Ratio
 M

odule Reduction Ratio

Figure 7: Query optimiza-

tion ratio.

of contiguous primitives can share physical stages. Furthermore,

Newton uses R to merge results from different primitives.

Based on the above ideas, Newton provides Algorithm 1 for mod-

ule rule composition. Figure 7 summarizes the optimization ratios

for 9 queries. The optimization ratio represents the percentage

of modules and stages that can be reduced from the nïve module

composition. Overall, Newton can reduce modules by more than

42.4% and stages by more than 69.7%. §6.4 demonstrates a detailed

analysis on the effect of module rule composition.

Next, we present an example to demonstrate how a compiled

traffic monitoring query works. At first, when a packet enters into

the switch pipeline, it matches the newton_init table to get the

desired query. Assume the packet 𝑝𝑘𝑡 needs to execute 𝑄1 shown

in Figure 6. Then, in the first stage, 𝑝𝑘𝑡 executesK1 to get operation
keys for the following modules whose index is 1. Next, in the second

stage, 𝑝𝑘𝑡 executes H1 and K2 simultaneously, and 𝑝𝑘𝑡 continues
to go through the other modules. Notably, in the fifth stage, R2 will

extracts the minimum value between the global result from R1 and

the hash result from S2. At last, R1 in the sixth stage will check

whether the global result is larger than 𝑇ℎ. If so, the switch shall
report the operation keys, hash results, state results and the global

result to the software analyzer.

5 QUERIES AT NETWORK-WIDE

Queries running in single switches is not enough for practical

network monitoring, because operators should correctly deploy

the queries on the forwarding paths of monitored traffic and have

network-widemonitoring requirements aswell, i.e. profiling network-

wide load imbalance. Thus, Newton shall support network-wide

monitoring queries. Network-wide monitoring queries should be

efficient and resilient, which needs to address two problems. The

first one is how to execute queries in different switches (§5.1). The

second one is how to place network-wide queries (§5.2).

5.1 Cross-switch Query Execution

The current practice for network-wide queries is sole query ex-

ecution model, where all queries run independently in switches.

However, the limited data plane resources make it hard to imple-

ment complex queries within one switch because a query might

occupy too many tables and stages that are beyond what switches

Figure 8: Cross-switch query execution with the result snap-

shot header.

support. Due to ASIC constraints and performance requirements,

it is hardly possible for future programmable switches to be satis-

factory. One of the solutions is to push more query logic into the

software analyzer [19], which is prone to be scalability bottlenecks.

Cross-switch query execution. Newton explores a novel direc-

tion that supports query implementation across switches. We pro-

pose cross-switch query execution (CQE). CQE makes switches work

together to compose a large pipeline of modules, and a query can

use all modules in the pipeline. CQE brings two benefits. First,

CQE increases the number of available stages, so that more prim-

itives and complex logic are allowed in one query. Second, CQE

enables one query to use the memory of many switches, which

effectively reduces the impact of data plane resource fragmentation

and improves the accuracy of reduce and distinct.

CQE imposes no change on packet forwarding paths and uti-

lizes switches along the path to realize queries jointly. We employ

parallelism concepts of distributed machine learning [57, 58] to

demonstrate how Newton differs from the existing solutions. On the

one hand, existing solutions are the same as data parallelism [59]

that slices data among workers (switches), while all workers im-

plement the same model. Whereas, Newton is identical to model

parallelism [60] that slices the model among workers, while the

workers should sequentially process data. Model parallelism is more

appropriate for queries than data parallelism because queryingmod-

els might be too large to be implemented in switches while switches

can process data at fast speed.

Result snapshot protocol. Although CQE seems complex, we

manage to design a low-overhead implementation, called result

301

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Yu Zhou et al.

(a) Query placement problem (b) Query placement example

Figure 9: Network-wide query placement. 𝑄𝑎 and 𝑄𝑏 moni-

tor the flow 𝑓1 and 𝑓2.𝑄𝑎 needs one switch, while𝑄𝑏 is parti-

tioned into two parts (𝑄1
𝑏
and 𝑄2

𝑏
) and run on two switches.

snapshot (SP) protocol. To implement CQE, all we need to do is

to transmit results along the forwarding path. Thus, as shown in

Figure 8,Newton piggybacks a snapshot of module execution results in

packets. Then, we use a table, named𝑛𝑒𝑤𝑡𝑜𝑛_𝑓 𝑖𝑛, to do the snapshot
operation and re-design the parser to decode the SP header and

to initialize result sets. Switches will remove the SP header before

packets arrive at the destination end-hosts. With SP, a query can be

flexibly implemented across multiple switches. As for cost, we only

need to reserve 12 bytes for SP and incur less than 1% bandwidth

overhead (assume 1500 bytes per packet), when packets need to

execute queries cross switches.

For network-wide queries, there remain many realistic problems,

one of which is how to place queries at network-wide while being

resilient to network failures and forwarding path update. In the

next section, we will provide the solution to the above question.

5.2 Resilient Module Rule Placement

When considering network-wide monitoring queries, how to place

queries inmultiple switches turns out be a hard problem. CQE further

adds up the difficulty of the query placement problem. As Newton

does not influence traffic forwarding paths, the queries should be

correctly deployed along forwarding paths for all monitored flows.

However, computing forwarding paths inherently is NP-hard [61],

and it is prohibitively expensive to calculate all forwarding paths

between any two hosts according to forwarding rules. Besides, the

situation goes worse when the monitored traffic includes a number

of flows that have different forwarding paths.

More importantly, forwarding paths are mutable and change

over time due to failures, routing protocol updating events, and so

on. For example, we deploy 𝑄𝑎 in Figure 9(a) to monitor flow 𝑓1
and 𝑓2. When there is a link failure, 𝑓1 is rerouted to 𝑓

′
1 . In this case,

𝑄𝑎 cannot monitor 𝑓
′
1 and generate the wrong monitoring results.

Considering the above factors, query placement is an intractable

problem. Thus, our idea is to simplify the problem by placing queries

in switches along all the possible paths without considering forwarding

rules. Figure 9(b) shows a concrete example to place a query with

CQE. The idea introduces redundant query rules, because it might

install query rules into the switches where there is no monitored

traffic. Fortunately, the redundant query rule cost is bounded.

Resilient module rule placement. Based on the above idea, we

propose Algorithm 2 that is computationally efficient and yields

strong resilience. The algorithm guarantees that the query logic can

work correctly with any forwarding path updating event. Further-

more, the algorithm supposes that stages of queries are sequential

Algorithm 2: Module rule placement

Input:Module composition C from Algorithm 1

Input: Query placement P at each switch

1 Each switch has 𝑁 module stages. 𝑆𝑒 contains edge switches

that are the monitored traffic’s first hop;

2 Slice C into𝑀 parts, 𝑐1, ..., 𝑐𝑀 , and𝑀 is �|C|/𝑁 �;

3 P contains the query slices of each switch;

4 foreach 𝑠 in 𝑆𝑒 do
5 topo_dfs (𝑠 , 1);

6 function topo_dfs (𝑠 , 𝑑)
7 if 𝑑 ≤ 𝑀 then

8 if 𝑐𝑑 is not in P [𝑠] then
9 P[𝑠].append(𝑐𝑑);

10 Label 𝑠 as discovered;

11 foreach neighbor 𝑠 ′ of 𝑠 do
12 if 𝑠 ′ is undiscovered then

13 topo_dfs (𝑠 ′, 𝑑 + 1);

14 Label 𝑠 as undiscovered;

and each switch has the same number of stages. For example, a

query with 10 stages needs 4 3-stage switches to complete, and the

query has 4 partitions. Algorithm 2 conducts a depth-first search

over the topology. Meanwhile, the algorithm will assign the query

partition for each switch, stored by P[𝑠], and different flows and
forwarding paths can reuse P[𝑠], restricting the number number
of module rules. Then, according to P[𝑠], Newton controller in-
stalls module rules into each switch. For example, 𝑄𝑏 in Figure 9(b)

monitors traffic between 𝐻1 and 𝐻2. Newton should place the two

partitions of 𝑄𝑏 as shown in the figure: Place 𝑄
1
𝑏
in all the edge

switches connected to𝐻1 and𝐻2, and place𝑄
2
𝑏
in all core switches.

Algorithm 2 does not answer an important problem: what if the

query requires more switches than the hop count along the forwarding

path. For example, a query could requires two switches, but the

forwarding path of its monitored traffic only has one hop. For this

case, Newton defers the remaining part of the query to the software

analyzer, e.g. Spark. The switches will report the current execution

status, and the software analyzer will continue executing the query.

6 EVALUATION

Setup. We deploy Newton on a testbed composed of three switches

and two servers. The switches [62] are equipped with 3.2T Tofino

ASIC [11] and Intel Pentium 1.60GHzCPU. The servers are equipped

with Intel Xeon 12-core 2.4GHz CPU and Intel XL710 NIC. The

testbed topology is alike Figure 8, and all links are 40Gbps. We use

two real-world packet traces from CAIDA [63] and MAWI [64] to

evaluate Newton.

Queries. We use 9 queries (𝑄1 to 𝑄9 in Table 2) from the open-

source repository [25]. Figure 6 shows the code of𝑄1. These queries

involve diverse monitoring intents. Some queries monitor flow

characteristics (e.g. 𝑄3), while some detect network attacks (e.g.

𝑄4 and 𝑄6). The time window of stateful query primitives spans

100ms, and values of reduce and distinct are evaluated and reset

302

Newton CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

Descriptions

𝑄1 Monitor new TCP connections

𝑄2 Monitor hosts under SSH brute attacks

𝑄3 Monitor super spreaders

𝑄4 Monitor hosts under port scanning

𝑄5 Monitor hosts under UDP DDoS attacks

𝑄6 Monitor hosts under SYN flood attacks

𝑄7 Monitor completed TCP connections

𝑄8 Monitor hosts under Slowloris attacks

𝑄9 Monitor hosts that do not create TCP connections after DNS

Table 2: Evaluation queries [25].

every 100ms. Note that not all queries can be fully implemented

on data planes [19], and we only consider the data plane parts

throughout the evaluation.

Result summary. In this paper, we evaluate Newton in five per-

spectives, including comparison of Newton and existing intent-

driven network monitoring systems, data plane resource usage,

comparison of cross-switch query execution (CQE) and the sole

switch query execution model, query compliation, and query place-

ment. We summarize the evaluation result highlights as follows.

• Query operations: Newton can install or remove a query within

20ms and does not interrupt normal packet forwarding. (§6.1)

• Resource efficiency: Newton can provide more data plane re-

sources to traffic monitoring queries via packing more modules

in stages. (§6.2)

• CQE efficiency: CQE can effectively reduce monitoring over-

heads and improve the monitoring accuracy for network-wide

queries. (§6.3)

• Query compliation: Newton can reduce consumed modules by

42.4% and consumed stages by 69.7% for query compilation. (§6.4)

• Network-wide query placement: Resilient query placement

does not bring large overheads and can easily scale out to large

networks. (§6.5)

6.1 Benefits of Newton

Interruption delay of updating queries in the existing sys-

tem. First, we evaluate how much time Sonata takes to update

running queries. In the experiment, we use switch.p4 [65] to for-

ward packets and change the number of table rules (TCAM or

SRAM) required to recover traffic forwarding. Moreover, we use

the time when the switch stops forwarding packets during query

updating as the interruption delay. As shown in Figure 10(a), after

updating queries, Sonata brings about 7.5s outage, i.e. the switch

throughput reduces to zero, while Newton does not affect the switch

throughput at all. As given in Figure 10, with the number of table

entries increasing, interruption delay of Sonata grows linearly, up

to 0.5 minutes with 60K table entries, which degrades network

reliability and capacity.

Delay of operating queries in Newton. In this part, we show the

delay of two Newton’s query operations, i.e. installing and removing

queries. In essence, query installation is to install some table rules,

while query removal is to remove some rules. Thus, we measure

the delay of manipulating rules for the 9 queries. Figure 11 shows

0 10 20 30 40

0.0

8.0

16.0

24.0

32.0

40.0

Th
ro

ug
hp

ut
 (G

bp
s)

Time (s)

 Sonata
 Newton

Start
Updating

Query

Finish
Updating

Query

(a) Throughput degradation

0 1K 5K 10K 20K 30K 40K 50K 60K
0.0

10.0

20.0

30.0

40.0

In
te

rr
up

tio
n

D
el

ay
 (s

)
#Entries

 TCAM
 SRAM

(b) Interruption delay of Sonata

Figure 10: Interruption brought by Sonata.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
0.0

5.0

10.0

15.0

20.0

25.0

O
pe

ra
tio

n
D

el
ay

 (m
s)

Query Installation:
 Mean Min~Max
Query Removal:
 Mean Min~Max

Figure 11: Query installation and removal delay.

the results of the experiments that are repeated for 100 times. Op-

erations of all queries take no more than 20ms. For 𝑄1, the delay

of query installation can even be as low as 5ms.

Monitoring overheads. We compare Newton with 5 countermea-

sures, i.e. *Flow [17], FlowRadar [20], TurboFlow [24], Scream [66],

and Sonata [19], in terms of monitoring overheads under differ-

ent queries and packet traces. We use the ratio of the number of

monitoring messages against the number of raw packets as the

monitoring overheads. As shown in Figure 12, Sonata and New-

ton incur the least monitoring overheads which are two orders

of magnitude smaller than the others as a result of accurate data

exportation. Furthermore, overheads of TurboFlow and *Flow are

proportional to traffic volume. As for FlowRadar whose register

303

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Yu Zhou et al.

Category Metric Crossbar SRAM TCAM VLIW Hash Bits SALU Gateway

Per-stage
Baseline 1.189% 1.232% 1.613% 4.225% 1.222% 1.389% 0.357%

Compact Module Layout 4.756% 4.929% 6.451% 16.90% 4.889% 5.555% 1.428%

Per-module

Field Selection 0.243% 0.704% 0.0% 3.521% 1.100% 0.0% 1.428%

Hash Calculation 2.682% 0.352% 0.0% 0.704% 1.589% 0.0% 0.0%

State Bank 1.219% 3.521% 2.150% 2.112% 2.200% 5.555% 0.0%

Result Process 0.609% 0.352% 4.301% 10.56% 0.0% 0.0% 0.0%

Per-primitive

filter(pkt.tcp.flags==2) 0.0186% 0.00193% 0.0252% 0.066% 0.0191% 0.217% 0.0056%

map(pkt=>(pkt.dip)) 0.0186% 0.00193% 0.0252% 0.066% 0.0191% 0.217% 0.0056%

reduce(keys=(pkt.dip),f=sum) 0.0371% 0.0385% 0.0504% 0.132% 0.0382% 0.0434% 0.0112%

distinct(keys = (pkt.dip, pkt.sip)) 0.0557% 0.0578% 0.0756% 0.1980% 0.0573% 0.0651% 0.0167%

Table 3: Hardware resources consumed by Newton. The values are normalized by the resource usage of switch.p4

Q1 Q2 Q3 Q4 Q5
10-6

10-4

10-2

100

102

M
es

sa
ge

 P
ac

ke
t R

at
io

 *Flow TurboFlow
 FlowRadar Scream
 Sonata Newton

(a) CAIDA

Q1 Q2 Q3 Q4 Q5
10-6

10-4

10-2

100

102

M
es

sa
ge

 P
ac

ke
t R

at
io

 *Flow TurboFlow
 FlowRadar Scream
 Sonata Newton

(b) MAWI

Figure 12: Monitoring overhead evaluation.

array size is 4096, the overhead is about 1%. When networks scale

out, FlowRadar consumes a large number of servers [20].

6.2 Data Plane Resource Efficiency

We demonstrate resource utilization of Newton at three levels, i.e.

stage level, module level, and primitive level. The involved resources

include table resources (e.g. SRAM and TCAM) and control flow re-

sources (e.g. gateway [9] for if-else expressions). In the experiments,

we configure each module to accommodate 256 rules.

Stage resource utilization. For stage resource utilization, the

baseline uses one stage to accommodate only one module (refer to

the naïve module layout in §4.2), and we compare the baseline with

the compact module layout. As shown by the per-stage category

in Table 3, module layout optimization can improve per-stage uti-

lization. The baseline is mostly 25% of the compact module layout

because the baseline modules are spread out over 4 stages. In sum-

mary, compared with the baseline, the compact module layout can

increase data plane resources available to queries.

Module resource utilization. As shown by the per-module cate-

gory in Table 3, each module takes a small amount of data plane

resources, which enables us to incorporate tens of modules in one

switch. Moreover, Newton could reserve considerable resources

for other switch functions. Besides, resource utilization is skewed

among modules. Thus, the compact module layout that puts four

1 2 310-6

10-4

10-2

100

102

M
es

sa
ge

 P
ac

ke
t R

at
io

Hop Count

 *Flow TurboFlow
 FlowRadar Scream
 Sonata Newton

(a) CAIDA

1 2 310-6

10-4

10-2

100

102

M
es

sa
ge

 P
ac

ke
t R

at
io

Hop Count

 *Flow TurboFlow
 FlowRadar Scream
 Sonata Newton

(b) MAWI

Figure 13: Network-wide monitoring overhead for 𝑄1.

modules in the same stage enables a balanced utilization of per-

stage resources.

Primitive resource utilization. As each module supports up to

256 queries, each of the 256 queries can amortize the module re-

sources. We show the resource utilization of the four example prim-

itives by adding up their amortized resources. As shown in Table 3,

each primitive occupies a minor amount of data plane resources,

and Newton enables memory-efficient concurrent queries.

6.3 Benefits of CQE

We evaluate cross-switch query execution (CQE) with regard to

scalability and accuracy of𝑄1 in the testbed. The testbed topology is

simple but representative to show the benefits of CQE.We configure

each switch to accommodate three register arrays, each of which

has varied numbers of registers. As for Newton, we deploy 𝑄1 in

all switches, thus 𝑄1 can utilize registers among all switches.

Scalability. In Figure 13, the overheads of all the systems other

than Newton are linearly proportional to the hop count of packet

forwarding paths. Because they treat switches as independent enti-

ties and deploy the same querying logic on switches. Thus, switches

report monitoring results independently, and the overheads grow

linearly with the forwarding path length. Differing from the exist-

ing systems, Newton treats all switches as a consolidated entity and

only reports monitoring data once. Thus, monitoring overheads

304

Newton CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

0 1000 2000 3000 4000

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Registers per Array

 Newton1 Sonata1

 Newton2 Sonata2

 Newton3 Sonata3

(a) Accuracy on CAIDA

0 1000 2000 3000 4000

0.0

0.2

0.4

0.6

0.8

1.0

FP
R

Registers per Array

 Newton1 Sonata1

 Newton2 Sonata2

 Newton3 Sonata3

(b) FPR on CAIDA

0 1000 2000 3000 4000

0.9994

0.9996

0.9998

1.0000

Ac
cu

ra
cy

Registers per Array

 Newton1 Sonata1

 Newton2 Sonata2

 Newton3 Sonata3

(c) Accuracy on MAWI

0 1000 2000 3000 4000

0.0

0.2

0.4

0.6

0.8

1.0

FP
R

(x
0.

00
1)

Registers per Array

 Newton1 Sonata1

 Newton2 Sonata2

 Newton3 Sonata3

(d) FPR on MAWI

Figure 14: Monitoring accuracy and errors.

of Newton are inherently agnostic to the forwarding path length,

yielding good scalability against network sizes.

Accuracy. We measure the accuracy and errors (false positive rates,

FPR) of 𝑄1 on Sonata and Newton when changing the number of

available registers per array from 256 to 4096. Furthermore, we also

change the forwarding path length, e.g. 𝑁𝑒𝑤𝑡𝑜𝑛1 represents that
the hop count is 1 for Newton. As shown in Figure 14, Newton can

improve the accuracy, e.g. about 350% improvement over Sonata

when there are 256 registers. The above results illustrate that New-

ton can efficiently utilize memory scattered in switches to provide

much better accuracy than existing solutions.

6.4 Evaluation of Query Compilation

To evaluate query compilation, we use the baseline that places one

module in one physical stage as the baseline. Then, we apply the

query optimization step by step, i.e. Opt.1, Opt.2, and Opt.3 (refer to

§4.3), over the baseline. Figure 15 displays the number of primitives,

modules , and stages for the baseline and each optimization step,

and Figure 6 shows overall reduction ratios for all queries.

Module and stage usage. Before diving into query optimization,

we analyze the number of primitives and modules. An intuition is

that more primitives lead to more modules and stages. However,

when it turns to Newton, the intuition seems incorrect. For exam-

ple, 𝑄6 (12 primitives) consumes much fewer stages and modules

than 𝑄8 (10 primitives). This is because 𝑄6 has multiple parallel

sub-queries, while Newton enables resource multiplexing among

sub-queries. As shown in Figure 15, resource multiplexing can ef-

fectively optimize the usage of modules and stages.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
0

20

40

60

N
um

be
r o

f M
od

ul
es

 Number of Primitives
 Baseline Opt. 1 Opt. 2 Opt. 3

0

5

10

15

20

N
um

be
r o

f P
rim

iti
ve

s

(a) The number of modules and primitives vs. Queries

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
0

20

40

60

N
um

be
r o

f S
ta

ge
s

 Baseline Opt. 1 Opt. 2 Opt. 3

(b) The number of stages vs. Queries

Figure 15: Evaluation of query compilation.

Query compilation optimization. Figure 15 shows that Newton

can effectively optimize query compilation. The baseline needs over

50 stages for some queries, which is impossible for off-the-shelf pro-

grammable switches. With query compilation optimization, Newton

occupies no more than 10 stages for all the 9 queries. Particularly,

for 𝑄6, Newton only needs 5 stages that are even smaller than the

number of primitives.

Query-level resource efficiency. Last, we compare Newton with

Sonata in terms of consumed tables and stages. Figure 15 shows

numbers of the logical tables and estimated stages (according to [55])

of 5 queries upon Sonata. The baseline of Newton consumes com-

parable tables to Sonata. Whereas, when applying the query com-

pilation optimization, Newton even has lower stage consumption

than Sonata.

Concurrent queries. Last, we compare Newton with Sonata in

terms of resource efficiency when there are multiple concurrent

queries. In the experiments, we assume that all the queries have

the same logic with 𝑄4. Furthermore, Sonata sequentially chains

these queries. S-Newton denotes that the queries in Newtonmonitor

the same traffic, and P-Newton denotes that the queries in Newton

monitor the different traffic. As shown in Figure 16, the module

number and the stage number of both Sonata and S-Newton are

linearly proportional to the number of queries. Whereas, P-Newton

multiplexes resources and yields small resource usage even with 100

queries. In summary, Newton can amortize resource consumption

among queries, which improves query-level resource efficiency.

305

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Yu Zhou et al.

0 20 40 60 80 100

0

500

1000

1500

2000

N
um

be
r o

f M
od

ul
es

Number of Concurrent Queries

 Sonata
 S-Newton
 P-Newton

(a) Module multiplexing

0 20 40 60 80 100

0

250

500

750

1000

N
um

be
r o

f S
ta

ge
s

Number of Concurrent Queries

 Sonata
 S-Newton
 P-Newton

(b) Stage multiplexing

Figure 16: Resource multiplexing over 𝑄4.

6.5 Evaluation of Query Placement

In this part, we evaluate the network-wide query placement to

show its scalability and overheads. In the experiments, we deploy

𝑄4 in the fat-tree topology when changing the topology scale from

tens of switches to thousands of switches, and we demonstrate the

scalability of network-wide query placement via the total table en-

tries as well as the average number of entries, i.e. entries per switch.

We assume that each switch can have 10, 5, 4, 3, 2 stages, then, 𝑄4

occupying 10 stages and 19 modules (also 19 table entries) requires

1 to 5 switches respectively for cross-switch query execution.

Figure 17(a) shows the number of required table entries when

deploying 𝑄4 in an 8-ary fat-tree topology and a classic backbone

topology from the top-tier North America ISP [67] with different

numbers of required switches. For the fat-tree topology, Newton

monitors traffic emitted into the top-of-rack switches from servers,

and for the ISP topology, Newton monitors the traffic emitted from

California. As can be seen, both the average and total table entries

increase with the number of required switches, while the growth

is more obvious on the ISP topology. Figure 17(b) shows the table

entries with different fat-tree topology scales. With the topology

scale increasing, the total table entries grow linearly, while the

average table entries stabilize to a constant value, indicating that the

network-wide query placement comes with acceptable overheads

and can easily scale to large networks.

7 DISCUSSION AND LIMITATIONS

Data plane virtualization. There is a line of work, including Hy-

per4 [26], HyperV [68], and P4Visor [69], which explores virtualiz-

ing data planes to make data plane support runtime reconfiguration.

They aim at providing on-demand operations of general data plane

functions, such as forwarding and firewall. Due to large resource

consumption, data plane virtualization can hardly be deployed on

hardware P4 targets. Alike data plane virtualization, Newton can

be view as virtualizing network monitoring queries, but Newton

presents a practical design that can run on hardware switches with

high resource efficiency.

Deployment. Newton is implemented as a component for the P4

program and can coexist with other components, such as routing

and load balancing. Moreover, the number of stages allocated to

Newton can be flexibly adjusted based on the resource requirements

1 2 3 4 5
0

5

10

15

Ta
bl

e
En

tr
ie

s
Pe

r S
w

itc
h

#Required Switches

 Fat-tree(8) ISP
 Fat-tree(8) ISP

0

300

600

900

To
ta

l T
ab

le
 E

nt
rie

s
(K

)

(a) Fat-tree(8) and ISP

10 20 30 40 50 60
0

2

4

6

8

10

12

Av
g.

 T
ab

le
 E

nt
rie

s

Topology Scale

 Avg. Table Entries
 Total Table Entries

0

5

10

15

20

25

30

35

40

To
ta

l T
ab

le
 E

nt
rie

s
(K

)

(b) Require 3 switches

Figure 17: Network-wide query placement of 𝑄4.

of other components. Furthermore, Newton controller can work as

a module of the centralized network controller or be deployed as

an independent process. CQE needs the Result Snapshot header to

transmit result sets among Newton-enabled switches and removes

the header before packets entering into servers. Besides, Newton

supports partial deployment, and CQE only works in adjacent New-

ton-enabled switches.

Limitations. Newton has its limitations. First, alike Sonata, Newton

only supports a few query primitives running on data planes, while

the other complex primitives (like join) should to be executed by

CPU, because the capability of Newton is inherently limited by data

planes. Second, this paper does not design the solution for sched-

uling concurrent queries to optimally utilize data plane resources,

which is left as the open question for our future work and other

interested researchers. Third, as for CQE, states in stateful query

primitive could lose in dynamic scenarios where forwarding paths

are dynamically altered, and the solo switch query execution model

has the same limitation. State loss could lead to ASIC reporting

inaccurate monitoring results, but CPU can alleviate the inaccuracy.

8 CONCLUSION

Compared with the state of the arts, Newton simultaneously meets

the requirements of today’s network traffic monitoring systems:

on-demand, low overhead, resource efficiency, and network-wide.

The main novelty of Newton lies in modular decomposition of query

primitives, the compact module layout, query compilation optimiza-

tion, cross-switch query execution, and resilient query placement.

The design of Newton is low-cost and readily deployable on ex-

isting programmable switches. Our evaluation demonstrates that

Newton brings significant benefits in scalability, dynamics, and ac-

curacy at a cost of acceptable data plane resources and bandwidth

consumption.

ACKNOWLEDGEMENT

We thank all reviewers and our shepherd for their constructive com-

ments. We thank Zhaowei Xi, Yunsenxiao Lin, Weibin Meng, Yimin

Jiang, and Ya Su, for their insightful suggestions. This research is

supported byNational Key R&DProgram of China (2019YFB1802504

and 2017YFB0801701) and the National Science Foundation of China

(61625203, 61832013, and 61872426). Prof. Mingwei Xu is the corre-

sponding author.

306

Newton CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

REFERENCES
[1] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson

Huang, and Amin Vahdat. Hedera: Dynamic flow scheduling for data center
networks. In Proceddings of NSDI, 2010.

[2] T. Benson, A. Anand, A. Akella, M. Zhang, T. Benson, A. Anand, A. Akella,
M. Zhang, T. Benson, and A. Anand. Microte: Fine grained traffic engineering
for datacenters. Proceedings of CoNEXT, 2011.

[3] Barefoot Networks. In-network ddos detection. Website. https://goo.gl/WfQUur.
[4] Robert T. Schweller, Ashish Gupta, Elliot Parsons, and Chen Yan. Reversible

sketches for efficient and accurate change detection over network data streams.
In Proceeding of IMC, 2004.

[5] Yibo Zhu, Ben Y. Zhao, Haitao Zheng, Nanxi Kang, Jiaxin Cao, Albert Greenberg,
Guohan Lu, Ratul Mahajan, Dave Maltz, Lihua Yuan, and Ming Zhang. Packet-
level telemetry in large datacenter networks. In Proceedings of SIGCOMM, 2015.

[6] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick McKe-
own, and Scott Whyte. Real time network policy checking using header space
analysis. In Proceedings of NSDI, 2013.

[7] sFlow. sflow. Website, 2019. https://sflow.org/.
[8] Benoit Claise. Cisco systems netflow services export version 9. Website. http:

//www.rfc-editor.org/rfc/rfc3954.txt.
[9] Pat Bosshart, Glen Gibb, Hun-seok Kim, George Varghese, NickMckeown, Martin

Izzard, Fernando Mujica, and Mark Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for sdn. In Proceedings of
SIGCOMM, 2013.

[10] Sharad Chole, Isaac Keslassy, Ariel Orda, Tom Edsall, Andy Fingerhut, Sha Ma,
Anirudh Sivaraman, Shay Vargaftik, Alon Berger, Gal Mendelson, Mohammad
Alizadeh, and Shang-Tse Chuang. drmt: Disaggregated programmable switching.
In Proceedings of SIGCOMM, 2017.

[11] Barefoot Networks. Tofino. Website, 2019. https://www.barefootnetworks.com/
products/brief-tofino/.

[12] Broadcom. Broadcom’s new trident 4 and jericho 2 switch devices offer pro-
grammability at scale. Website. https://www.broadcom.com/blog/trident4-and-
jericho2-offer-programmability-at-scale.

[13] Haoyu Song. Protocol-oblivious forwarding: Unleash the power of sdn through
a future-proof forwarding plane. In Proceedings of HotSDN, 2013.

[14] Pat Bosshart, Glen Gibb, Hun-seok Kim, George Varghese, Nick Mckeown, Mar-
tin Izzard, Fernando Mujica, and Mark Horowitz. P4: Programming protocol-
independent packet processors. SIGCOMM CCR, 44(3), 2014.

[15] Minlan Yu, Lavanya Jose, and R Miao. Software defined traffic measurement with
opensketch. In Proceedings of NSDI, 2013.

[16] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. Dream:
Dynamic Resource Allocation for Software-defined Measurement. In Proceedings
of SIGCOMM, 2015.

[17] John Sonchack, Oliver Michel, Adam J Aviv, Eric Keller, and Jonathan M Smith.
Scaling Hardware Accelerated Monitoring to Concurrent and Dynamic Queries
With * Flow. In Proceedings of ATC, 2018.

[18] Amazon. Cloud watch. Website, 2019. https://aws.amazon.com/cloudwatch/.
[19] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and

Walter Willinger. Sonata: Query-driven network telemetry. In Proceedings of
SIGCOMM, 2018.

[20] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. Flowradar: A better
netflow for data centers. In Proceedings of NSDI, 2016.

[21] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. Lossradar: Fast detection
of lost packets in data center networks. In Proceedings of CoNEXT, 2016.

[22] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat
Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim.
Language-Directed Hardware Design for Network Performance Monitoring.
In Proceedings of SIGCOMM, 2017.

[23] Apache Spark. Spark: Lightning-fast unified analytics engine. Website. http:
//spark.apache.org.

[24] John Sonchack, Adam J. Aviv, Eric Keller, and Jonathan M. Smith. Turboflow:
Information rich flow record generation on commodity switches. In Proceedings
of EuroSys, 2018.

[25] Priceton University. Query-driven streaming network telemetry. Website, 2019.
https://github.com/Sonata-Princeton.

[26] David Hancock and Jacobus van der Merwe. Hyper4: Using p4 to virtualize the
programmable data plane. In Proceedings of CoNEXT, 2016.

[27] Zhang Cheng, Jun Bi, Zhou Yu, Abdul Basit Dogar, and Jianping Wu. Hyperv: A
high performance hypervisor for virtualization of the programmable data plane.
In Proceedings of ICCCN, 2017.

[28] Cheng Zhang et al. Mpvisor: A modular programmable data plane hypervisor.
In Proceedings of the Symposium on SDN Research, SOSR. ACM, 2017.

[29] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray Huang, Dave
Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis
Kurien. Pingmesh: A large-scale system for data center network latency mea-
surement and analysis. In Proceedings of SIGCOMM, 2015.

[30] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. Simplifying Datacenter
Network Debugging with PathDump. In Proceedings of OSDI, 2016.

[31] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad
Alizadeh, Hari Balakrishnan, George Varghese, Nick McKeown, and Steve Lick-
ing. Packet transactions: High-level programming for line-rate switches. In
Proceedings of the 2016 ACM SIGCOMM Conference, SIGCOMM, pages 15–28.
ACM, 2016.

[32] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. Netcache: Balancing key-value stores with fast
in-network caching. In Proceedings of SOSP, 2017.

[33] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim, Vladimir
Braverman, Xin Jin, and Ion Stoica. DistCache: Provable Load Balancing for
Large-Scale Storage Systems with Distributed Caching. In Proceedings of FAST,
2019.

[34] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. Netchain: Scale-free sub-rtt coordination. In
Proceedings of NSDI, 2018.

[35] RuiMiao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, andMinlan Yu. Silkroad:
Making stateful layer-4 load balancing fast and cheap using switching asics. In
Proceedings of SIGCOMM, 2017.

[36] Thomas Holterbach, Edgar Costa Molero, Maria Apostolaki, Alberto Dainotti,
Stefano Vissicchio, and Laurent Vanbever. Blink: Fast Connectivity Recovery
Entirely in the Data Plane. In Proceedings of NSDI, 2019.

[37] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer
Rexford. Hula: Scalable load balancing using programmable data planes. In
Proceedings of SOSR, 2016.

[38] Amedeo Sapio et al. In-network computation is a dumb idea whose time has
come. In Proceedings of HotNets, 2017.

[39] Jiamin Cao, Jun Bi, Yu Zhou, and Cheng Zhang. Cofilter: A high-performance
switch-assisted stateful packet filter. In Proceedings of SIGCOMM Posters and
Demos, 2018.

[40] Repositories for hypertester with strict anonymity. Website, 2019. https://github.
com/hypertester/.

[41] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,
Xiaoming Li, and Steve Uhlig. Elastic sketch: Adaptive and Fast Network-wide
Measurements. In Proceedings of SIGCOMM, 2018.

[42] Qun Huang, Patrick P. C. Lee, and Yungang Bao. Sketchlearn: Relieving User
Burdens in Approximate Measurement with Automated Statistical Inference. In
Proceedings of SIGCOMM, 2018.

[43] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S. Muthukr-
ishnan, and Jennifer Rexford. Heavy-hitter detection entirely in the data plane.
In Proceedings of the Symposium on SDN Research, SOSR, pages 164–176. ACM,
2017.

[44] Changhoon Kim et al. In-band network telemetry via programmable dataplanes.
In Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined Net-
working Research, SOSR, 2015.

[45] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. Distributed Network
Monitoring and Debugging with SwitchPointer. In Proceedings of NSDI, 2018.

[46] Yu Zhou, Jun Bi, Tong Yang, Kai Gao, Jiamin Cao, Dai Zhang, Yangyang Wang,
and Cheng Zhang. Hypersight: Towards scalable, high-coverage, and dynamic
network monitoring queries. IEEE Journal on Selected Areas in Communications,
2020.

[47] Broadcom. Bcm56275: 244 gb/s programmable multilayer switch. Website.
https://docs.broadcom.com/docs/56275-PB.

[48] Ramakrishnan Durairajan and Reza Rejaie ABSTRACT. Cedar: A reconfigurable
data plane telemetry system. Website. https://cs.uoregon.edu/directed-research-
project/cedar-reconfigurable-data-plane-telemetry-system.

[49] Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, and Jennifer Rexford. Beau-
coup: Answering many network traffic queries, one memory update at a time. In
Proceedings of SIGCOMM, 2020.

[50] Minlan Yu. Network Telemetry: Towards A Top-Down Approach. SIGCOMM
CCR, 49(1), 2019.

[51] Amin Vahdat. Enter the andromeda zone - google cloud platform’s latest net-
working stack. Website, 2019. http://goo.gl/smN6W0.

[52] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Mazières, and
Nick McKeown. I know what your packet did last hop: Using packet histories to
troubleshoot networks. In Proceedings of NSDI, 2014.

[53] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7), July 1970.

[54] Graham Cormode and Shan Muthukrishnan. An improved data stream summary:
the count-min sketch and its applications. Journal of Algorithms, 55(1):58–75,
2005.

[55] Lavanya Jose, Lisa Yan, George Varghese, and Nick Mckeown. Compiling packet
programs to reconfigurable switches. In Proceedings of NSDI, 2015.

[56] Kun Qian, Sai Ma, Mao Miao, Jianyuan Lu, Tong Zhang, PeilongWang, Chenghao
Sun, and Fengyuan Ren. Flexgate: High-performance heterogeneous gateway in
data centers. In Proceedings of APNet, 2019.

307

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Yu Zhou et al.

[57] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling distributed
machine learning with the parameter server. In Proceedings of OSDI, 2014.

[58] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
Tensorflow: Large-scale machine learning on heterogeneous distributed systems.
arXiv preprint arXiv:1603.04467, 2016.

[59] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Proceedings of NIPS, 2012.

[60] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed
deep networks. In Proceedings of NIPS, 2012.

[61] Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKeown. Auto-
matic test packet generation. IEEE/ACM ToN, 22(2), 2014.

[62] Edgecore Networks. Wedge 100bf-32x. Website, 2019. https://bit.ly/2TfkI2p.
[63] The caida ucsd anonymized internet traces - chicago 2014-03-20. Website. https:

//goo.gl/s35dwY.

[64] WIDE Project. Mawi working group traffic archive. Website. http://mawi.wide.
ad.jp/mawi/.

[65] The P4 Language Consortium. Consolidated switch repository. Website, 2019.
https://github.com/p4lang/switch.

[66] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. SCREAM:
Sketch Resource Allocation for Software-defined Measurement. In Proceedings of
CoNEXT, 2015.

[67] At&T. Next-generation ip mpls backbone. Website. https://www.att.com/
Common/merger/files/pdf/wired-network/Domestic_0C-768_Network.pdf.

[68] Cheng Zhang, Jun Bi, Yu Zhou, Abdul Basit, and Jianping Wu. Hyperv: A high
performance hypervisor for virtualization of the programmable data plane. In
Proceedings of ICCCN, 2017.

[69] Peng Zheng, Theophilus Benson, and Chengchen Hu. P4visor: Lightweight virtu-
alization and composition primitives for building and testing modular programs.
In Proceedings of CoNEXT, pages 98–111, 2018.

308

