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Abstract— Network monitoring systems are designed to fulfill
operators’ intents and serve as essential tools to modern net-
works. As a result of rapidly increasing network bandwidth
and scale nowadays, network monitors should satisfy on-demand
network monitoring for continuously growing traffic volumes.
However, existing monitoring systems either cannot satisfy flex-
ible intents on demand or produce significant overheads. In this
paper, we present Newton, an intent-driven traffic monitor that is
able to specify operators’ intents with traffic monitoring queries
and conduct dynamic and scalable network-wide queries deploy-
ment. Newton enables operators to customize and modify queries
dynamically without interrupting the network workflow. Besides,
Newton proposes systematic optimizations at device level and
network-wide level to reduce resource consumption while deploy-
ing queries. Newton can combine the resources across switches to
deploy complex queries with high resilience to dynamic network
status. Evaluations prove that Newton is of high flexibility,
scalability, and resource efficiency, which demonstrates Newton is
promising to be deployed in large-scale programmable networks.

Index Terms— Network monitoring, programmable networks.

I. INTRODUCTION

NETWORK monitoring is an essential part of various
network operations. For instance, network operators need

to 1) capture heavy-hitter flows for traffic engineering to
enhance bandwidth utilization [1], [2], 2) spotlight abnormal
traffic patterns to detect anomalies [3], [4], 3) collect flow-
level or packet-level data to troubleshoot failures [5], [6].
Aforementioned operations bring out various tasks of network
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monitoring. Besides, the monitoring tasks may change fre-
quently in practical. However, traditional traffic monitors, e.g.,
sFlow [7] and NetFlow [8] can only provide coarse-grained
monitoring data due to substantial overheads, which cannot
satisfy the monitoring tasks.

The development of programmable switches [9]–[12] brings
new insights for operators to reconfigure monitoring tasks into
data planes with domain-specific languages, e.g., NPL [12],
POF [13], and P4 [14]. If monitoring tasks are compiled into
a P4 program, the job can be realized at line rate in the
data planes [14]. Two fundamental principles are vital when
designing a practical and efficient traffic monitor.

Traffic monitors should be capable to customize and
modify data planes dynamically without interrupting net-
work workflow. The monitoring jobs that the operators hope
to deal with change frequently [15]–[18], and supporting a
wide range of on-demand tasks in one tool is significant. We
use the word intent to represent the jobs that are required in the
practical network, where the on-demand jobs are not fixed and
the change happens all the time. Thus, for traffic monitors, it is
essential to consider how to deploy new intents in a practical
network. When there is a firmware upgrade or device replace-
ment, the intents can be deployed statically while the device
is off and network workflow is halted, but this is infrequent.
In most cases (e.g., operators may need specific information
about certain flows when network monitors detect anomalies
or attacks), operators still need to adjust their monitoring
intents dynamically while they cannot halt the devices or the
workflow, which is critical under the consideration of service
level agreement (SLA) and cost. Therefore, traffic monitors
should support dynamic customization of monitoring intents
to guarantee no influences on network workflow, including
halting/rebooting the switch, changing the packet forwarding
logic and leading to a significant loss on performance.

Traffic monitors should achieve low overheads for scal-
ability. The scale and bandwidth of network boom rapidly
in recent years. Therefore, monitoring overheads, including
bandwidth for data transmission and CPU resources for analy-
sis [19]–[21], should not increase severely when the traffic
monitor is deployed in a large commodity network.

Nevertheless, existing traffic monitors cannot obey two
aforementioned principles simultaneously. Sonata [19] and
Marple [22] export exact information required by monitor-
ing tasks with small overheads, as these works abstract the
network as a database and specify monitoring tasks by traffic
monitoring queries inspired from SQL and Spark API [23].
The jobs are transformed to monitoring primitives and then
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deployed into switches as the P4 program. Consequently,
Sonata and Marple use queries to represent the monitoring
jobs and modify jobs through building a new P4 program
and downloading the program into the data planes, which
causes switch reboot and halts the normal workflow. Therefore,
Sonata and Marple are capable of a wide range of tasks, but not
the task switching in the practical networks, which is the key
obstacle to use Sonata and Marple in practical. Meanwhile,
Turboflow [24] and *Flow [17] aggregate monitoring data
on data planes and execute queries on software analyzers to
satisfy monitoring intents, thus providing dynamic operations
without bothering network workflow. But the overheads grow
rapidly when network scale and traffic volume expand, leading
to poor scalability.

We present Newton, an intent-driven NEtWork Traffic
mONitor that supports dynamic traffic queries efficiently.
Newton uses a widely-used query-based API, Spark API [23]
(alike Sonata) to represent traffic monitoring intents, and a
centralized controller compiles the queries to Newton mod-
ules. On data planes, Newton modules can be dynamically
reconfigured through table entry updating and the update
does not require halting or interrupting the workflow. Newton
exports precise intent-oriented data with low overheads and
high scalability. The design of Newton is not trivial due to
three challenges.

The first challenge is supporting dynamic traffic queries
with limited programmability in data planes. Though
called programmable, data planes support limited operations to
guarantee high performance [14]. Therefore, supporting traffic
queries in data planes without compromising performance
can be challenging, particularly when we require dynamically
updating the traffic queries. Existing data plane virtualization
works [25]–[27] may be general solutions to dynamic traffic
queries but severely influence performance. Newton observes
that queries primitives can be formulated as a set of process-
ing steps, which can be summarized as selecting operation
keys, calculating hash values, executing state transitions, and
processing state results. Therefore, Newton deals with the
challenge by decomposing query primitives into four basic
Newton modules. The Newton modules are designed to be
runtime reconfigurable, thus Newton uses table rules to recon-
figure the data planes and realizes intents dynamically.

The second challenge is supporting various and complex
intents with limited resources in network devices. Resources
(e.g., stages and SRAM) are significant when considering
whether multiple queries or a complex query can be deployed
or not. Moreover, the accuracy of query primitives (e.g.
reduce and distinct) is highly relevant to the amount of
stateful memory. Consequently, it is vital for traffic monitors
to be resource-efficient to alleviate the limitations. Firstly,
Newton designs a compact module layout on data planes to
improve the utilization of stages. Secondly, Newton presents
a query compilation algorithm to reduce the usage of mod-
ules and stages. Thirdly, Newton introduces dynamic register
allocation to meet the accuracy bound efficiently. Fourthly,
Newton proposes network-wide query deployment to com-
bine the capability of multiple devices with small bandwidth
overheads.

The third challenge is supporting network-wide deploy-
ment with network dynamics. Newton allows a query to be
partitioned across different switches to extend the capability of
supporting queries. Therefore, traffic monitors need strategies
on how to place monitoring queries in the path of target traffic.
The strategies should be robust towards network dynamics,
which refer to the conditions that changes the forwarding
path, e.g., switch fault or link failure. Unfortunately, detecting
network dynamics is a hard problem, especially determin-
ing the corresponding forwarding paths associated with the
network dynamics. Therefore, Newton proposes a resilient
query placement algorithm by redundantly placing queries
into switches. The rule multiplexing ensures the redundancies
do not lead to unacceptable overheads. The query placement
algorithm promises strong resilience to network dynamics.

Newton can be deployed on P4-programmable switches.
We build a prototype of Newton and implement 9 queries
upon the prototypes. The evaluations of Newton with real-
world packet traces reveal that Newton provides dynamic
intent customization without interrupting the normal workflow.
Compared with Marple and Sonata which need seconds to
statically update queries, query update in Newton can be
finished in dozens of milliseconds. Compared with TurboFlow
and *Flow, Newton reduces monitoring overheads by two
orders of magnitude. Meanwhile, through compact module
layout and rule composition, Newton reduces module usage
by over 42.4% and stage usage by over 69.7% compared to
the naive query deployment.

II. BACKGROUND AND RELATED WORKS

A. Background

We give a brief introduction to the background on traffic
monitoring queries and the reconfigurability of programmable
data planes.

Traffic Monitoring Queries: Traffic monitoring plays a key
role in network operations. Various traffic monitoring intents
have been proposed and then specified as traffic monitoring
queries, which are defined to be composed of various prim-
itives by existing works [19], [22]. In this paper, we adopt
four stream processing primitives: filter, map, distinct, and
reduce, which are also used by Sonata [19] to develop network
monitoring queries in data planes. For instance, if operators
find that a victim host may be under DDoS attacks and hope
to filter and block attack flows, the traffic monitors may design
the queries as: 1) use filter to select packets whose destination
IP is the victim host; 2) use map to map packet key (i.e.
flow 5-tuples) to value (i.e. 1 as the number of packet);
3) use reduce to aggregate the value (i.e., add the register
by 1); 4) if the reduce result exceeds the threshold, drop
the corresponding packets and report the packet digest. Using
the traffic monitoring queries, traffic monitors can transform
monitoring intents to processing logic in the network.

Reconfigurability of Programmable Data Planes: Program-
mable data planes allow operators to customize network logic.
The reconfigurability comes from: 1) match-action table.
Match-action tables are the basic blocks in the architecture
of programmable data planes, users can define the matching
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fields, matching methods, and actions. The structure of match-
action tables needs to be defined in a P4 program, while the
parameters are given by table rules at runtime. 2) stateful
memory. Stateful memory (i.e., registers and counters) can
store states and support line-rate transactional ALUs [28].
3) control flow. How to organize the match-action table and
the stateful memory in a switch pipeline is called control flow,
which can be also designed in a P4 program [14].

Therefore, the reconfigurability of programmable data
planes can be divided into two dimensions. The first is non-
runtime reconfigurability, referring to the data plane con-
figurations that cannot be customized at runtime. Among
aforementioned components, configurations that need to be
clarified in the P4 program (e.g. the structure of match-action
table, transactional ALU of stateful memory, control flow)
belong to non-runtime reconfigurability, which means oper-
ators cannot change the configurations without interrupting
network workflow. The second is rumtime reconfigurability.
Configurations that are defined by control plane (e.g. match-
action table rules, direct access to stateful memory) belong
to the runtime reconfigurability. To achieve dynamic traffic
monitoring queries without interrupting the normal workflow,
traffic monitors can only leverage the runtime reconfigurability
to update queries. Though developing a proprietary ASIC
module dedicated to traffic monitoring is a feasible way, e.g.
BroadScan [29] in Broadcom’s BCM56275 chip [30], Newton
presents a traffic monitoring module design that leverages
general match-action tables to achieve good portability.

B. Related Works

Traffic Monitoring on Programmable Data Planes: Many
traffic monitors for specific purposes have been proposed as
network devices become more and more programmable and
powerful. FlowRadar [20] presents a design of network-wide
per-flow counters, while LossRadar [21] builds a per-flow
loss map following the same routine. HashPipe [31] detects
large flows entirely on data planes using an efficient data
structure. ElasticSketch [32] supports rich traffic monitoring
metrics including heavy hitters and entropy through deploying
sketches dynamically. PRECISION [33] uses partial recircu-
lation to find top flows and explores action stacking to reduce
the usage of stages. HyperSight [34] detects abnormal packet
behaviors through Bloom Filter Queue. BeauCoup [35] can
count distinct items among related packets. Compared with
above works, Newton is designed to be a general-purpose
system for various traffic monitoring intents.

On-Data-Plane Traffic Monitoring Queries: Since intents
change continuously in commodity networks, works aiming
to support general traffic monitoring demands are proposed.
Marple [22] presents language-directed hardware design.
Operators specify traffic monitoring intents with a high-level
language, which parses intents to monitoring queries and
then compiles the queries into switch pipelines. Sonata [19]
combines CPU with switching ASIC to implement monitoring
queries and achieves better accuracy. But both Marple and
Sonata falls short of supporting dynamic traffic monitoring
queries since they need to download a new P4 program to

Fig. 1. Architecture of Newton. The blue boxes identify the contributions of
Newton. Newton realizes the compact module layout (grey background) at the
initialization time while queries are compiled and rules are dispatched at the
runtime (white background). Blue arrows represent the workflow: 1) intents
are transformed into query primitives, 2) the controller compiles primitives
into rule entries, 3) rules are downloaded into the data planes.

update monitoring intents, leading to halting the normal work-
flow. Although Sonata and Marple support general queries
instead of specific purposes, it can be hard to enjoy the benefit
in a practical network.

Dynamic Traffic Monitoring Queries: To support dynami-
cally updating traffic queries, *Flow [17] and TurboFlow [24]
propose dynamic monitoring queries. Both *Flow and Tur-
boFlow export generic data (grouped packet vectors for *Flow
and flow records for TurboFlow) and analyze dynamic query
logic on software. Consequently, the above works lead to too
much monitoring information and significant CPU resource
consumption [19]. Works like UnivMon [36] and LEAN [37]
explore more efficient mechanisms of dynamic traffic monitor-
ing and make great progress, but the generic data is still much
larger compared to intent-oriented data. Newton explores a
different routine to implement dynamic monitoring queries
directly on data planes. Therefore, Newton can export intent-
oriented data rather than generic data to decrease monitoring
overheads.

III. OVERVIEW OF NEWTON

A. Architecture and Workflow

Figure 1 shows the architecture of Newton. Newton is
composed of a centralized controller and data planes deployed
with Newton modules. The controller generates table rules
from traffic queries compiled from intents and dispatches rules
to each switches. The P4 pipeline realizes the queries and
exports monitoring data. Specifically, the workflow of Newton
is consistent with the top-down network telemetry paradigm,
and can be divided into two phases: initialization and runtime.

Initialization: At the initialization time, operators add New-
ton module layout into the P4 program, and compile the
P4 program into the switch pipeline. The Newton module
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is independent with queries, and is able to implement query
primitives through table rules.

Runtime: At the runtime, operators’ intents are transformed
to traffic monitoring queries. Furthermore, queries are com-
piled into table rules rather than the P4 program, which differs
from Sonata and Marple. Therefore, Newton allows operators
to change intents dynamically. Then Newton controller installs
table rules in certain switches.

B. Spotlights of Newton

Through designs in IV and V, Newton manages to achieve
four spotlights that make Newton a promising traffic monitor:

Dynamic (Update Intents Without Interrupting the Normal
Workflow): It is important for traffic monitors to update
monitoring queries dynamically without interrupting the nor-
mal workflow, as operators change intents continuously when
network circumstances or requirements change. Moreover, the
rise of cloud networks gives tenants opportunities to raise
dynamic monitoring queries to their traffic [18]. Therefore,
we regard dynamic as an essential principle for traffic monitors
to be practically deployed. Newton proposes query primitive
decomposition (IV-A) that decomposes primitives into four
modules: field selection, hash calculation, state bank, result
process, and queries can be implemented on the data planes
by downloading table rules into Newton modules.

Intent-Oriented (Export Intent-Oriented Data Rather Than
General Data): Network virtualization works [25]–[27] or
traffic monitors such as Turboflow [24] and *Flow [17] provide
dynamic traffic queries, but are of poor scalability. Some
works choose coarse-grained sampling or filtering to reduce
overheads but lose accuracy and even fail to satisfy certain
intents. Other works explore to improve scalability through
compression and aggregation, which is still insufficient. For
instance, *Flow needs 8 CPU cores to fully process data from
a 640Gbps switch [17]. For a network with 1K switches,
*Flow requires at least 8,000 CPU cores for monitoring.
By implementing queries on data planes (IV-A), Newton
exports intent-oriented data dynamically, rather than general
data to overcome the scalability problems.

Efficient (Optimize Resource Usage to Support Multiple
and Complex Queries): Traffic monitoring is sensitive to the
usage of resources (e.g. stages and stateful memory). On the
one hand, the amount of stages serves as the limitation of
deploying traffic query logic. On the other hand, the accuracy
of queries is highly relevant to memory allocation. Newton
conducts compact module layout (IV-B) and rule composi-
tion (IV-C) to optimize the number of modules and stages,
and query memory allocation (IV-D) to enhance the utilization
of memory. Besides, for too many queries or too complex
queries that exceed the capability of the single switch, Newton
proposes switch combination for query execution (V-A) to
expand the resources.

Resilient (Provide Strong Resilience to Network Dynam-
ics): Network dynamics refer to the conditions that influence
the forwarding path of flows, e.g., modify forwarding rules,
switch fault and link failure. To coordinate switches to com-
plete traffic queries, network dynamics should be considered.

TABLE I

SUMMARY OF NEWTON SPOTLIGHTS AND CORRESPONDING DESIGNS

For instance, if the former part of a query is deployed in
switch A, and the latter in switch B. When B is down, the
traffic is forwarding to other switches and thus the query
becomes invalid due to the lack of the latter part. Existing
works concentrate on device-level monitoring and leverage
single-device capability to avoid coordination among switches.
Data are then combined by the controller to analyze network
events. Newton combines switches to partition traffic queries
to further support complex queries, thus Newton needs to
solve with network dynamics. Consequently, Newton provides
resilient rule placement (V-B) for network-wide queries with
strong resilience to network dynamics.

Table I gives a summary of the spotlights of Newton and
corresponding techniques. The designs are organized as two
dimensions, device level and network level.

IV. QUERIES AT DEVICE LEVEL

This section discusses how Newton implements queries
dynamically and exports intent-oriented data with efficient
usage of resources in the programmable switch. IV-A proposes
the structure of Newton modules that support dynamic traffic
queries and export data specified by the queries. IV-B presents
how to pack Newton modules into physical stages efficiently
at the initialization phase. IV-C introduces how to reduce the
number of modules and stages at the runtime phase.

A. Query Primitive Decomposition

Newton focuses on four query primitives proposed by
Sonata [19], including filter, map, reduce, and distinct, because
aforementioned primitives are proved to be capable of a series
of significant monitoring intents.

The key insight is that we find query primitives share a
similar set of processing steps: 1) select some header fields;
2) generate a key by using fields directly or hash functions;
3) do atomic operations on the stateful memory; 4) further
process based on the state result. Therefore, Newton realizes
the processing steps as four modules: field selection (F), hash
calculation (H), state bank (S), and result process (R). Each
module is a P4 subprogram of match-action tables, registers,
and control flow logic. In a stage of P4 pipeline, all tables of
four modules are defined, so the stage is able to be applied as
any module using table rules. Consequently, we can define a
chain of modules to realize query primitives.
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Fig. 2. Design of field selection, hash calculation, state bank, and result process. The MD stands for metadata in P4 pipeline.

Figure 2 shows the structure of four modules. We then
discuss the details of Newton modules and highlight the
dynamically reconfigurable parts.

Field Selection (F): The first step of query primitives is
to select packet fields as input for subsequent steps. Due to
the difficulty of list operations such as add or remove a field,
we perform a bit-mask logic to all optional fields. As shown
in Figure 2, operators use rules to define the masks, and then
conduct AND with fields to obtain desired fields or bits (e.g.
first 16 bits of sip).

Hash Calculation (H): H represents operations that generate
a key by hashing from masked fields. Besides, in many
circumstances, the key can be simply a certain field. Therefore,
H supports hash mode and direct mode. In the hash mode,
operators can reconfigure the type of hash function and the
range of the hash result. In the direct mode, H directly
chooses a field as the key. To support the direct mode,
H should add actions corresponding to the certain field,
thus the number of actions is proportional to the number
of global fields. Fortunately, sufficient VLIW [9] in pro-
grammable switches makes it possible to cover widely-used
fields.

State Bank (S): To support stateful primitives (reduce and
distinct), Newton adopts the sketch-based implementation,
using Count-Min Sketch (CM) [38] for reduce and Bloom
Filter (BF) [39] for distinct. S maintains a register array and
four types of stateful ALUs to conduct executions to each
register. As CM needs + and BF needs |, the ALUs are
competent for query primitives. Besides, registers can be read
and written from the control plane by certain APIs in the
switch CPU (e.g., register_write in the PTF-test). Newton
applies the APIs to clear the register when there is a task
switching (One monitoring time window of the task finishes)
or memory allocation (New queries come and the memory
need to adjust). The time cost of writing registers from the
control plane is negligible. Therefore, S supports flexible
register allocation among different queries. The output of S

is the state result, which can be the hash result directly as
well.

Result Process (R): After obtaining the state result, query
primitives may react to the result. While the reactions can be
varied, R realizes three essential behaviors. For other complex
behaviors, we believe it is more appropriate to defer them as
a series of new primitives. The first is report, which uploads
the metadata collection to the control plane via mirroring.
The second is ALUs (e.g. +, −, and =) performing certain
calculation on state result. The third is stop that stops querying
the packet.

With aforementioned modules, Newton can decom-
pose query primitives into module rules. Take filter
(pkt.srcIP&0xFFFF0000 == 10.1.0.0) as an example as
shown in Figure 2. Firstly, Newton controller configures the
mask of source IP as 0xFFFF0000, so F reserves the highest
16 hits. H then directs the selected field as the key, and S does
nothing but uses the key as the state result. At last, R stops
the query procedure if the state result is not 10.1.0.0.

One query is a chain of query primitives, thus it can be
deployed neutrally in P4 pipeline through query primitive
decomposition. Whereas, how to support multiple queries
needs extra designs. For queries monitoring the same traffic,
Newton chains them as a series of queries. Queries monitoring
different traffic cannot affect each other and thus need to be
parallel in control logic. Therefore, Newton introduces the
newton_init table which conducts ternary matching on 5-tuples
to classify traffic at the front of all queries. The traffic is then
dispatched to corresponding queries. As for the capacity, it is
decided by data plane resources (how much to offer, e.g. table
size of all modules and register memory size of S cannot
exceed the limitation.) and monitoring intents (how much to
require, e.g. the number of rules and consumption of registers).

All Sonata [19] queries can be re-implemented with decom-
posed query primitives. For queries beyond the capability of
data planes (e.g., join), Newton shares the same idea to bypass
them to run on CPUs. Though Newton owns the same express-
ibility of Sonata theoretically, it is our responsibility to remind
that query primitive decomposition comes with additional
costs, as it consumes more data plane resources. Therefore,
we present how to optimize query primitive decomposition
during the initialization time (IV-B) and the runtime (IV-C)
to make the resource usage of Newton comparable to
Sonata.

B. Compact Module Layout

The stage in P4 pipeline is capable of all four modules as
revealed above, and thus sustains resources of all modules.
Thus, if naively loading one module into one stage at the
initialization time, the resource utilization can be low. An intu-
itive example is that only S can access stateful memory, thus
the utilization of stateful memory is less than the ratio of S.

Therefore, Newton presents compact module layout to
accommodate as many modules as possible in the switch
pipeline. Unfortunately, module accommodation cannot be
arbitrary due to the write-read dependencies between certain
modules. We discuss the module dependencies and then pro-
pose compact module layout.
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Fig. 3. Module dependencies. The blue blocks refer to write-read dependency
between the two modules. The blocks with crosses represent the two modules
are placed in the same stage in compact module layout.

Fig. 4. Compact module layout. Arrows denote queries con continue to
execute the next module after the current one. A metadata set is composed
of the selected fields, the hash result, and the state result.

Module Dependencies: Each type of module takes up one
table and different types of resources. But modules may
have write-read dependencies due to the shared values. For
instance, S reads the key written by H. Modules with write-
read dependencies are not possible to be placed in the same
stage. The left part of Figure 3 introduces the dependencies.
To enhance the utilization of resources in each stage, Newton
comes up with compact module layout.

Compact Module Layout: Figure 4 introduces the compact
module layout. Each column stands for one stage in the switch.
four modules as a set of (F, H, S, R) are deployed in the stage.
The module consists of several match-action tables and a series
of metadata fields, and S owns a certain number of registers.
Once table entries are downloaded, the corresponding modules
conduct operations to realize the query.

Due to the dependencies, four modules cannot be deployed
in the same place. The key insight of compact module layout is
to use two independent metadata sets and two sets of modules
that use different metadata sets. For instance, though F1 and
H1 have the write-read dependency, H2 can be placed with
F1 because they do not use the same metadata set (selected
fields, hashed key, state result). The accommodation of two
sets of modules is revealed in the right part of Figure 3.
In brief, the stage can be regarded as two types: one allows
controller to download rules of (F1, S1, H2, R2), the other
allows rules of (F2, S2, H1, R1). Moreover, Newton uses a
new field named global_result, and extends R to match and
update the global result. Therefore, the results of primitives
using different metadata sets can coordinate together.

Compact module layout improves the utilization of resource
usage in each stage by involving an additional metadata set
and the global result. Consequently, compact module layout

enables more query primitives than naive deployment. Besides,
compact module layout brings new insight for optimizing
query compilation (opt.3 in IV-C).

C. Module Rule Composition

At the runtime, the compilation of queries in Newton can
be partitioned into three steps: 1) compile queries to query
primitives, which can be done the same as Sonata; 2) compile
query primitives to rules of Newton modules, which is intro-
duced in IV-A; In this section, we mainly discuss 3) module
rule composition, which means placing modules rules into the
compact module layout. Module rule composition decides how
many modules and stages are required to implement the query,
thus it is highly relevant to the efficiency of the resource usage.

A naive idea is to simply use a module suite (F-H-S-R) for
a primitive and chain the modules according to the primitive
sequence. We discuss an example query in Figure 5. We can
learn the naive approach occupies 20 modules and 20 stages,
which is wasteful and not affordable (e.g., Tofino has 12 stages
per pipeline). To reduce consumption of modules and stages,
Newton optimizes the rule composition in three dimensions.

Opt.1 (Replacing Front Filters With Newton_Init): As men-
tioned in IV-A, Newton employs newton_init to dispatch traffic
for different queries. In other words, newton_init is a natural
filter to select flows. We notice that for many queries the
most front primitive is filter. Therefore, if the front filter of
the query uses only 5-tuples and TCP control flag to select
traffic, it can be functionally replaced by newton_init. For other
filter, Opt.1 conducts nothing, otherwise the primitive before
the filter will only process traffic filtered by the filter after
them, which makes severe mistakes. As shown in Figure 11a,
we can perform the replacement for 8 out of 9 queries.

Opt.2 (Removing Unneeded Modules): We observe two
types of modules are unneeded. The first type is unused
modules. Given the specific parameters of primitives, some
modules can be unused. For instance, as Figure 5 illustrates,
map(pkt→pkt.dip) only needs F, thus we can remove other
modules without violating the correctness. The second type
is redundant modules. Given the former primitives, we may
already get the metadata we need thus the modules aiming to
get the metadata can be redundant. In Figure 5, the map and
reduce share the same key, thus we only need one F for the
map and the two-array reduce. For the same reason, we do not
need (F, H, S) in latter filter to get the dip and count. We only
need R to stop/continue the query based on the count.

Opt.3 (Composing Module Rules into Two Metadata Sets):
Remember we propose compact module layout to enhance the
utilization of resources, which means we have a two-metadata-
set based module layout. Therefore, we do not need to chain
all primitives as they are in the queries, and we can compose
modules “vertically” as shown in the example. Accordingly,
the number of stages are further reduced.

The optimizations of module rule composition are sum-
marized as Algorithm 1. Figure 5 shows the reduction ratio
of modules and stages for the 9 queries used in this paper
(table II), and VI-C conducts a further analysis on the effect
of module rule composition.

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on May 01,2022 at 02:27:50 UTC from IEEE Xplore.  Restrictions apply. 



XI et al.: NEWTON: INTENT-DRIVEN NETWORK TRAFFIC MONITORING 945

Fig. 5. Module rule composition of finding SYN flooding victims (left part) and the optimization ratio of 9 queries used in this paper (right part).

Algorithm 1 Module Composition Algorithm
Input: A module list (LM ) and a primitive list (LP )
Output: Module composition for each stage (C)

1 L′
M ← [ ];

2 θ ← none;
3 Replace the front filters with newton_init if they rely on five

tuples and TCP flag to classify traffic ; /* Opt.1 */
4 foreach m in LM do
5 if m.is_used() then
6 if m is F and m.oper_keys �= θ then
7 θ ← m.oper_keys;
8 L′

M .append(m) ; /* Opt.2 */

9 else if m is not F then
10 L′

M .append(m); ; /* Opt.2 */

11 θ1, θ2, p′ ← none, none, none;
12 foreach p in LP do
13 Remove all m from p.modules when m /∈ L′

M ;
14 if p′ �= none and p’.label = 1 then
15 if p.oper_keys �= θ2 then
16 Restore F for p if removed;

17 θ2 ← p.oper_keys;
18 p.label← 2 ; /* Opt.3 */

19 else
20 if p.oper_keys �= θ1 then
21 Restore F for p if removed;

22 θ1 ← p.oper_keys;
23 p.label← 1 ; /* Opt.3 */

24 p′ ← p;

25 C ← [ ]; s← 1;
26 while ∃x ∈ L′

M , x is unassigned do
27 S ← [ ];
28 foreach p in LP do
29 m← the first unassigned module of p;
30 if !(stage s cannot accommodate m
31 or S contains p.modules[0]
32 or dependencies of m are satisfied) then
33 S .append(m);
34 Label m as assigned;

35 s← s + 1;
36 C.append(S) ; /* module composition */

D. Query Memory Allocation

Besides stages, the stateful memory (e.g. registers) is
another vital type of resources that determines the query

accuracy. Though the amount of registers in one state bank
cannot change without the reconfiguration, Newton is able
to dynamically adjust the allocation to queries by changing
the parameters in Newton modules. For instance, if Q1 uses
512 registers and the user hopes to extend the size to 1024,
Newton changes the hash range of Q1 and the memory offset
of other queries, and then Newton clears the registers from
the control plane as mentioned in State bank (S) in IV-A.
Therefore, new results of Q1 will be recorded in more registers
and are still isolated with other queries.

Considering the query concurrency and limited registers,
we can benefit from dynamic memory allocation to use regis-
ters efficiently and enhance the accuracy of queries. Dynamic
memory allocation consists of two significant questions: 1)
when to reallocate for queries, 2) how to reallocate for queries.

When to Reallocate for Queries: Newton collects stateful
results to the control plane at a fixed frequency (e.g., 100ms)
and estimates the accuracy of each query in the control plane.
It is trivial that there is no need to change the allocation if no
query suffers low accuracy and we have sufficient remaining
registers for new queries. Therefore, Newton reallocates regis-
ters when the accuracy bound of a certain query is missed or
the resource is over-provisioned. Newton borrows algorithms
of Scream [40] to estimate the accuracy. The algorithms of
Scream applies probabilistic bounds on individual counters and
tightens the bounds by separating large item errors from small
item errors [40]. Scream algorithms can estimate the accuracy
without a prior knowledge of monitored traffic. Consequently,
the intent-oriented data of Newton provides sufficient infor-
mation for the estimation. Take Count-Min sketch (CM) as
an example, Newton exports the size of detected heavy hitters
at the end of each monitoring window, and counters in new-
ton_init record the traffic volume of each query. Combining
aforementioned data with the register size and the threshold,
Newton can estimate CM accuracy according to Equation 5 in
Scream [40].

How to Reallocate for Queries: How to reallocate refers
to the strategies of deciding new size of registers for queries.
Alike Scream, Newton allocates registers at the block granu-
larity, while Newton does not adopt the multiplicative increase
and multiplicative reduce (MM) used by Scream. Register
allocation should converge as fast as possible and guaran-
tee stability, because slow convergence compromises query
accuracy and unstable register allocation imposes a large
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TABLE II

EVALUATION QUERIES [41]

amount of control channel overheads. Therefore, Newton
adopt aggressive increase and conservative reduce (AC) for
register allocation. VI-D demonstrate that Newton achieves
better convergence and stability than Scream.

Aggressive Increase: Scream chooses to increase allocated
registers by a factor of two when the accuracy bound fails.
Therefore, the allocation epoch may cross multiple windows,
and the convergence rate can be low. Newton directly increases
allocated registers to the number that can satisfy the accuracy
bound according to the accuracy estimation algorithm at the
beginning of each window.

Conservative Reduce: Multiplicative reduce leads to unsta-
ble accuracy and results in sparse register allocation. Instead,
Newton chooses more conservative reduce than Scream. New-
ton conducts addictive reduce if the result of subtracting the
accuracy bound from the estimated accuracy is larger than the
threshold, otherwise Newton makes no reduce. Conservative
reduce performs a slow reaction to register over-provisioning,
but achieves much better stability. In traffic monitoring, guar-
anteeing accuracy bound is of high priority when considering
a memory-accuracy balance. Therefore, Newton claims that
the slow reaction is reasonable.

V. QUERIES AT NETWORK LEVEL

Though queries may be compiled together and data may be
collected together in a centralized controller, existing works
run queries independently in switches. The limited resources
make it hard to implement some complex queries within
one switch. Meanwhile, pushing complex queries to software
analyzer can cause scalability problems.

Newton provides a highly decoupled abstraction on queries
to support dynamic intent update, which makes it possible for
Newton to split one query into multiple switches and combine
the resources in the switches (V-A.) Implementing queries
across multiple switches should be resilient against network
dynamics (e.g. failures), thus Newton discusses how to place
network-wide queries (V-B).

A. Switch Combination for Query Execution

Newton proposes cross-switch execution (CQE) to support
query deployment across switches. As shown in Figure 6, CQE
makes upstream and downstream switches work together as
“a large pipeline” of Newton modules. After executing the
logic of upstream modules, the switch obtains the result sets

Fig. 6. Cross-switch query execution with the result snapshot header.

and transmit through the result snapshot header (SP) in the
packet. The snapshot header is added at the first CQE-enable
switch and removed at the last one similar to in-band network
telemetry. Using the snapshot header, downstream switches
can continue the monitoring process. As a result, Newton
achieves the detachment of monitoring logic and thus can
leverage the resources among different switches to complete
the query.

CQE aims to solve to problem of deploying complex queries
by chaining the primitives across switches in the forwarding
path (Figure 6), not to do the queries in parallel (more
discussions in VII).. CQE increases the number of available
stages so that one query can have more primitives and complex
logic. Besides, we can use CQE to expand memory to improve
the accuracy of reduce and distinct (e.g., perform multi-array
reduce).

CQE combines switches without imposing any change on
packet forwarding paths, which make it hard to place rules.
The reason is that CQE needs the information of forwarding
paths but finding paths for all flows is a costly NP-hard
problem. Besides, the situation can be worse if a flow may
own more than one path due to the strategies of load balance
or traffic engineering.

More importantly, even if we get all paths at a certain time
and the network has no policy that allows multi-path flows,
forwarding paths still change due to network dynamics, such
as failures, routing protocol updating, and so on. We explain
the problem in Figure 7a that Qa is a query that tends to
monitor f1 and f2 and can be deployed in one switch. When
there is a link failure and f1 is rerouted to f �

1, Qa cannot
monitor f �

1 and thus exports wrong data.
Considering the above facts, we propose resilient query

placement (Algorithm 2) to tolerate network dynamics without
involving unbounded redundant rules. Our idea is to simplify
the problem by placing queries in switches along all possible
paths without considering forwarding rules. Algorithm 2 sup-
poses the partition of queries are sequential and conducts a
depth-first search over the topology from the edge switches.
When the switch is discover at k-depth (the maximum is M),
Newton deploys the kth partition of module rules into the
switch. Figure 7b shows how to conduct the query Qb that
needs two switches. Following the logic of algorithm 2,
Newton places Q1

b in two edge switches connected to H1 and
H2, and places Q2

b in two core switches.

B. Resilient Query Placement

Query placement algorithm cannot satisfy the query if the
query requires more switches than the hop count along the
traffic forwarding path. For this case, Newton allows to defer
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Fig. 7. Network-wide query placement. The left part describes the problem
of network dynamics in even the simplest situation(Qa needs one switch).
The right part gives an example of resilient query placement of Qb which
needs to be partitioned into two parts (Q1

b and Q2
b ).

Algorithm 2 Resilient Query Placement
Input: Module composition C from Algorithm 1
Input: Query placement P at each switch

1 Each switch has N module stages. Se contains edge
switches that are the monitored traffic’s first hop;

2 Slice C into M parts, c1, . . . , cM , and M is �|C|/N�;
3 P contains the query slices of each switch;
4 foreach s in Se do
5 topo_dfs (s, 1);

6 function topo_dfs (s, d)
7 if d ≤ M then
8 if cd is not in P [s] then
9 P[s].append(cd);

10 Label s as discovered;
11 foreach neighbor s� of s do
12 if s� is undiscovered then
13 topo_dfs (s�, d + 1);

14 Label s as undiscovered;

the remaining part to the software analyzer, e.g. Spark. The
last-hop switch reports current execution status for the analyzer
to continue the query execution.

VI. EVALUATION

We develop a prototype of Newton on a testbed composed
of three switches and two servers, and the P4 program is
in [42]. The switches are equipped with 3.2T Tofino ASIC [11]
and Intel Pentium 1.60GHz CPU. The servers are equipped
with Intel Xeon 12-core 2.4GHz CPU and Intel XL710 NIC.
The topology is alike Figure 6, and all links are 40Gbps.
We use two real-world packet traces from CAIDA [43]
and MAWI [44] to evaluate Newton. As for the monitoring
queries, we use 9 queries (Table II) from the open-source
repository [41], and give analysis to Q1 specifically in Fig-
ure 5. Selected queries involve various monitoring intents,
such as monitoring flow characteristics(e.g. Q3), detecting
network attacks(e.g. Q4, Q5 and Q6). Values of stateful query
primitives, e.g., reduce and distinct are uploaded and reset
every 100ms. Besides pushing the values through digests,
Tofino allows users to pull the register from the control plane.
Therefore, users can decide the interval of uploading to adjust
the overhead of messages. Note not all queries can have a

full implementation on data planes, we only consider the
evaluation of data planes in this section.

We evaluate Newton following the spotlights in III-B to
demonstrate that Newton manages to achieve a dynamic,
intent-oriented and network-wide traffic monitor with high
efficiency.

• Dynamic and Intent-Oriented: Newton can install or
remove a query within 20ms and does not interrupt the
normal workflow.

• Efficiency of Compact Module Layout: Newton enhances
the efficiency of resource usage via compacting more
modules in stages.

• Efficiency of Module Rule Composition: Newton reduces
modules by 42.4% and stages by 69.7% during query
compilation.

• Efficiency of CQE: CQE reduces monitoring overheads
and ameliorate the accuracy of monitoring queries.

• Network-Wide Query Placement: Resilient query place-
ment will not bring large overheads and can scale out to
large networks.

A. Performance of Newton

Interruption Delay of Updating Queries in the Existing
Traffic Monitor: Firstly, we demonstrate the improvement that
can be obtained with dynamic query updating by evaluate the
time cost that Sonata takes to an query update, which equals
to the time that the switches refuse the normal workflow.
We use switch.p4 as the logic of packet forwarding and
change the number of table rules that represent the forwarding
policies. As shown in Figure 8a, Sonata brings about 7.5s
outage when there are no forwarding rules, and the switch
throughput reduces to zero. Newton does not influence the
normal workflow since we do not halt the switch and only
update the table rules to deploy new queries. Figure 8b
further introduces the interruption of Sonata when changing
the number of forwarding rules. The delay grows up to 30s
with 60K forwarding rules because Sonata reboots the switch
and thus need to reconfigure all forwarding rules into the
switch. Therefore, compared with Sonata that involves obvious
interruption, Newton succeeds to perform dynamic queries that
is suitable to apply in a practical network.

Delay of Updating Queries in Newton: Secondly, we eval-
uate how fast Newton can deploy the new query to show the
efficiency of Newton. We measure the delay of deploying and
offloading rules of the 9 queries one by one. The result in
Figure 9 proves that no single installation/removal exceeds
20ms. In conclusion, Newton can complete the deployment of
new queries in negligible time without interrupting the normal
workflow.

Monitoring Overheads: Thirdly, we demonstrate that New-
ton is intent-oriented and produce minor overheads close to
Sonata. As for overheads, we use the ratio of the number
of monitoring messages against the number of packets as
the monitoring overheads. We compare Newton with 5 base-
lines: *Flow, FlowRadar, TurboFlow, Scream, and Sonata.
We realize our baselines based on the open-source code and
configure them as the paper suggested. Overheads of *Flow
and TurboFlow is irrelevant to the query. For FlowRadar,
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Fig. 8. Interruption brought by Sonata.

Fig. 9. Installation and removal delay of Newton.

the overheads is proportional to the register array size, thus
keeping the same since we fix the size as 4096 and do not
change the report rate. As shown in Figure 10, on both traffic
traces, Newton and Sonata lead to minor overheads that are
two orders of magnitude smaller than others credit to intent-
oriented data exportation.

B. Resource Usage of Newton

We reveal the efficiency of resource utilization of Newton
from three perspectives: stage level, module level, and prim-
itive level. In the experiments, we configure each module to
accommodate 256 rules.

Per-Stage Resource: The baselines refer to the average value
of implementing one module in one stage and supporting
dynamic traffic query as a chain of F-H-S-R (the naive module
layout discussed in IV-B). Compact module layout manages
to accommodate four modules in one stage, thus enhances the
utilization of stages in data planes.

Per-Module Resource: Per-module category shows the
resource usage of (F, H, S, R). Each module consumes a small
amount of resources so we can incorporate tens of modules in

Fig. 10. Monitoring overheads of Q1-Q5.

Fig. 11. Evaluation of rule compilation.

one switch while reserving enough resources for other switch
functions.

Per-Primitive Resource: Each module can accommodate
256 rules, which means each module supports up to
256 queries. We calculate per-primitive usage through multi-
plying the number of modules required by the primitive to the
average resources dispatched to the query in the module. Each
primitive occupies minor resources and thus proves Newton
enables resource-efficient concurrent queries.

C. Evaluation of Rule Compilation

We evaluate the optimization step by step as described
in IV-C, i.e. Opt.1, Opt.2 and Opt.3 against the baseline.
Figure 11 illustrates the number of modules, primitives, and
stages after each optimization step. The overall reduction ratios
are released in Figure 5. Furthermore, we choose Q4 to test
the capability of resource multiplexing of Newton (Figure 12).

Module and Stage Usage: Figure 11 reveals the number
of modules, primitives, and stages of different queries. Note
that due to the parallelism more queries do not mean more
stages and modules. For instance, Q6 has more primitives
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TABLE III

HARDWARE RESOURCES CONSUMED BY Newton. THE VALUES ARE NORMALIZED BY THE RESOURCE USAGE OF SWITCH.P4

Fig. 12. Resource multiplexing over Q4.

(12 primitives) than Q8 (10 primitives) while needs less
modules and stages, because Q6 owns multiple independent
sub-queries that can be completed in parallel. As shown in
Figure 5, Newton reduces over 42.4% modules and over
69.7% stages through the optimization of rule compilation.
The baseline needs over 50 stages for some queries, while
Newton needs no more than 10 stages for all the 9 queries.
For instance, for Q6 Newton only requires 5 stages which is
even smaller than the number of primitives.

Concurrent Queries: To examine the capability of resource
multiplexing, we compare Newton with Sonata in terms of
module and stage consumption when there are multiple con-
current queries. We assume all the queries own the same
logic as Q4. S-Newton refers that the queries monitor the
same traffic, and both Newton and Sonata cannot implement
queries in parallel. Meanwhile, P-Newton devotes that the
queries monitor different traffic, which means Newton can
deploy multiple queries through adding corresponding rules.
Figure 12 illustrates the results. Sonata and S-Newton are
linearly proportional to the number of queries, while P-Newton
multiplexes resources and yields small resource usage. As a
result, Newton can amortize resource consumption among
queries and thus further improve resource efficiency.

D. Evaluation of Memory Allocation

As for memory allocation, we compare Newton with Scream
in terms of convergence rates, stability, and memory efficiency.
We set 256 as the initial array size when allocating register
for the distinct primitive. We estimate the accuracy of spotting
new elements in the bloom filter. We adopt two accuracy

Fig. 13. Evaluation of memory allocation over CAIDA.

bounds, 90% and 95%, and the allocation epoch of Scream
spans two windows whose length is 100ms.

Accuracy Estimation: Firstly, we evaluate the estimation of
accuracy in Figure 13a. The relative error grows slowly but
stays low (less than 8.5%) as real accuracy decreases. The
result proves that Newton provides good accuracy estimation,
thus Newton can leverage the estimated accuracy for the
register allocation.

Register Allocation: Figure 13b shows the register allocation
under 90% and 95% accuracy bound. The strategy of Scream
cannot tell the difference between 90% and 95% due to the
coarse granularity of multiplicative increase, which indicates
over-provisioning for 90%. Besides, the allocation is not stable
and perform as continuously two-phase switching due to the
rapidly multiplicative reduce. Newton supports fine-grained
memory allocation that in both 90% and 95% circumstances
Newton occupies fewer registers than Scream.

Convergence and Stability: We further discuss the perfor-
mance of Newton and Sonata under 90% and 95% accuracy
bound in Figure 13c and 13d. The Real stands for the actual
accuracy of each window, while the Est for the estimated
accuracy after each epoch. The result demonstrate that Newton
has: 1) high convergence efficiency. Newton can converge
the accuracy for over 100K flows within several windows
credit to aggressive increase, and the convergence delay is

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on May 01,2022 at 02:27:50 UTC from IEEE Xplore.  Restrictions apply. 



950 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 2, APRIL 2022

Fig. 14. Network monitoring overheads of Q1 with different number of
hops.

over 50% smaller than Scream. 2) good stability. Newton
converges to a robust allocation with the presence of traffic
changing appreciated to conservative reduces, yielding much
better stability and less modifications to switches than Scream.

E. Evaluation of CQE

To evaluate the cross-switch query execution (CQE) pro-
posed in V-A, we deploy Q1 in all switches in the topology.
Consequently, the query can utilize stages and registers among
all switches.

Monitoring Overheads: We evaluate monitoring overheads
through message packet ratio (the same metric as VI-A).
As shown in Figure 14, all the baselines are linearly pro-
portional to the hop count since existing works consider
queries independently. Thus, switches export data indepen-
dently. Newton, on the contrary, conducts switch combination
to realize network-wide deployment, thus switches deploy the
query properly and export data once. Therefore, the overheads
are irrelevant to the hop of forwarding path, yielding good
scalability to the network scale.

Accuracy: We calculate the accuracy and FPR (false
positive rate) of Newton and Sonata under the configurations
of different number of available registers per array in reduce
and the length of path. Since both Sonata and Newton can
leverage the servers to overcome the collisions and shortage
of memory, the results only rely on the data plane to show
the effect of CQE. The Newton1 refers that the hop count
is 1 and represent the performance on the single switch.
As illustrated in Figure 15, Newton2 and Newton3 achieve
obvious improvement against other configurations, and
Newton3 improves the accuracy on CAIDA by about 350%
when there are 256 registers. The results prove that Newton
combines switches efficiently to utilize the resources and
obviously improves the accuracy and FPR.

F. Evaluation of Query Placement

We evaluate the total number of table entries in the entire
network and the average number of table entries in the single
switches to represent the overhead of network-wide query
placement of Q4. We assume that each switch can have 10,
5, 4, 3, 2 stages thus Q4 that needs 10 stages and 19 modules
(also 19 table entries) requires 1 to 5 switches for switch
combination. Figure 16 displays the results under different
topology, switch capability, and network scales.

Fig. 15. Evaluation of monitoring accuracy and false positive rate (FPR).

Fig. 16. Network-wide query placement of Q4.

Firstly, we evaluate the entries required in an 8-ary fat-
tree topology and a backbone topology from the top-tier
North America ISP [45] and change the switch required to
support Q4 (Figure 16a). For the fat-tree topology, the traffic
is emitted from servers to top-of-rack switches, and for the ISP
topology the traffic is emitted from California. As the number
of required switches increases, the average and total number
of table entries increases due to the resilient placement, and
the growth on the ISP topology is more obvious. The average
number of table entries in both the fat-tree and ISP topology
is moderate and under control.

Secondly, we examine the influence of network scale by
changing the scale of the fat-tree topology (Figure 16b). As the
topology scale grows, the average number of table entries tends
to converge upward to a stable value. In other words, the
resilient query placement is of high scalability to the scale
of network.

The evaluations demonstrate that resilient query placement
comes with acceptable overheads regardless of the topology
and the capability of switch. Besides, the strategy can scale to
large networks.
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VII. DISCUSSION

In this section, we further discuss three dimensions of
Newton that may be highly concerned: the novelty of Newton,
how to deploy Newton, and the limitations of Newton.

Novelty: Newton supports dynamic monitoring query and
exports intent-oriented data. Traffic monitors like Marple and
Sonata support traffic monitoring through deploying queries
into the P4 program, while Newton proposes modules to
decompose query primitives and leverage the table rules to
deploy queries dynamically. *Flow and Turboflow support
dynamic monitoring query by implementing intents on soft-
ware and exporting general data. Newton exports intent-
oriented data that produces much less overheads. The primitive
decomposition in Newton is inspired by dataplane virtualiza-
tion [25], [26], and the philosophy is also applied by other
monitoring methods [33]. Works of data plane virtualization
can be configured as the traffic monitor, but consume plenty of
resources and influence the performance. Besides, the deploy-
ment on hardware P4 targets can be difficult. Recent works like
BeauCoup [35] can support multiple queries dynamically, but
the expressibility is limited (focusing on the distinct primitive).
Compared with many traffic monitoring methods that focus on
special query or primitive, Newton is a general-purpose system
to support more monitoring intents.

Deployment: Newton can be implemented in the P4 hard-
ware, and can coexist with other dataplane functions, such
as routing and load balancing. Operators can adjust the
resources of Newton in the reconfiguration phase to meet
the requirement of other functions. To deploy CQE, switches
require the Result Snapshot header to achieve communication
of result sets between upstream and downstream switches,
which can be realized in a INT-enable device, which have been
supported. In conclusion, Newton supports partial deployment.
A P4-programmable switch can implement Newton at device
level, while switch combination requires extra support for
communication that is practical in nowadays switches.

Limitations: Newton definitely owns its limitations and we
hope to discuss the limitations in detail.

Firstly, similar to Sonata, Newton only support partial
primitives entirely on data planes. Complex primitives, e.g.,
join should be executed by CPU due to the limitation of data
planes. If the total queries require memory above the capacity
of the devices, Newton also needs help from the servers to
leave some queries to the CPU, or tolerate an compromising
result.

Secondly, CQE and resilient placement duplicate queries
in different switches, but cannot support multi-path traffic.
To make it explicit, we give an example based on Figure 7b.
Qb need to be parted as (Q1

b , Q2
b), and Q2

b contains stateful
operations, e.g., reduce, to find targets exceeding the threshold.
If the flow under monitoring can be forwarded to the two
switches with Q2

b in parallel, possibly the stateful values on
each switch do not exceed but the total number exceeds,
which give wrong results. Therefore, we emphasize that the
switch combination that we propose aims to solve the network
dynamic problem (the forwarding path may change, but only
one at a certain time), rather than the multi-path problem

(more than one forwarding path for the same flow in a
certain time).

VIII. CONCLUSION

We present Newton , a traffic monitor that supports dynamic
traffic monitoring query and exports intent-oriented data with
low overheads, high resource efficiency, and high resilience
to network dynamics. The significant insight of Newton is
decomposing primitives into modules that can be reconfigured
through table rules, and Newton proposes compact module
layout, optimizations on rule compilation, and strategies of
memory allocation to make the idea practical and resource-
efficient. Besides, Newton develops an original strategy of
cross-switch query execution with resilient query placement to
support combining the resources across switches. Evaluations
demonstrate that Newton introduces visible improvements on
scalability, dynamics and accuracy at a cost of moderate
resource and bandwidth consumption.
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