
Octans: Optimal Placement of Service Function
Chains in Many-Core Systems

Heng Yu , Zhilong Zheng, Junxian Shen, Congcong Miao , Chen Sun , Hongxin Hu ,Member, IEEE,

Jun Bi , Senior Member, IEEE, Jianping Wu, Fellow, IEEE, and Jilong Wang ,Member, IEEE

Abstract—Network Function Virtualization (NFV) offers service delivery flexibility and reduces overall costs by running service function

chains (SFCs) on commodity serverswithmany cores. Existing solutions for placing SFCs in one server treat all CPU cores as equal and

allocate isolated CPU cores to network functions (NFs). However, advanced servers often adopt Non-UniformMemory Access (NUMA)

architecture to improve the scalability of many-core systems. CPU cores are grouped into nodes, incurring performance degradation due

to cross-nodememory access and intra-node resource contention. Our evaluation shows that randomly selecting cores to place NFs in

an SFC could suffer from 39.2 percent lower throughput comparing to an optimal placement solution. In this article, we propose Octans,

an NFVorchestrator to achievemaximum aggregate throughput of all SFCs in many-core systems. Octans first formulates the

optimization problem as a Non-Linear Integer Programming (NLIP) Model. Thenwe identify the key factor for problem solving as

evaluating the throughput drop of an NF caused by other NFs in the same SFC or different SFCs, i.e., performance drop index, and

propose a formal and accurate predictionmodel based on system level performancemetrics. Finally, we propose two online algorithms to

quickly find near-optimal placement solutions for one-time and incremental deployment. Extensive evaluation on a prototype

implementation shows that Octans significantly improves the aggregate throughput comparing to two state-of-the-art placement

solutions by 27.1�45.2 percent for one-time deployment and by 20.9�38.1 percent for incremental deployment, with very low prediction

errors. Moreover, Octans could quickly find a near-optimal placement solution with tiny optimality gap.

Index Terms—Many-core system, network function virtualization, service function chain, optimal placement

Ç

1 INTRODUCTION

NETWORK Function Virtualization (NFV) was recently
introduced to address the limitations of traditional

middleboxes. NFV runs network functions (NFs) on com-
modity servers with general-purpose processors such as
Intel x86 to improve service delivery flexibility and reduce
overall costs. In NFV, packets are usually processed by a
sequence of NFs, which form a service function chain (SFC).

Nowadays, to provide high throughput and simplify
equipment management in data center, commodity servers
used in NFV are often high-performance and high-density
withmultiple CPU cores [1], [2], which we refer to asmany-core
systems. One such server has the capability of accommodating

an entire SFC or even multiple SFCs [3], [4]. In this situation,
current solutions for the placement of NFs in one server is to
treat all CPU cores as equal, and allocate isolated CPU cores
to different NFs, in order to avoid performance degradation
for NFs [3], [5].

However, above solutions overlook the fact that CPU
cores in a many-core system are actually unequal. Using dif-
ferent core sets to support the same SFC could result in sig-
nificantly different throughput. This is because many-core
systems today usually adopt Non-Uniform Memory Access
(NUMA) architecture for high scalability [6]. Fig. 1 shows a
typical architecture of the Intel x86 many-core system. CPU
cores are grouped into nodes. Each node contains multiple
cores and its own local memory. Randomly selecting CPU
cores to support an SFC could suffer from seriously compro-
mised throughput due to the following two reasons.

(1) Bottleneck incurred by cross-node memory access. When
packets come into server through NIC, they are stored in
the memory which located at the same node of the NIC.
While CPU cores in other nodes can access the memory via
Intel QuickPath Interconnect (QPI), local memory access
inside one node is much faster than remote access. To study
its effect on the performance of NFV, we place a simple SFC
(Router! NIDS) on a many-core system with two nodes in
four ways shown in Fig. 2a and evaluate their performance
when packets come in through Node #0. As illustrated in
Fig. 2b, the performance of worst-case placement (i.e., P-B)
achieves less throughput than the best-case placement (i.e.,
P-A) by 39.2 percent. An intuitive solution is to place all
NFs in an SFC in the same node to avoid remote memory
access. However, the number of cores in one node is limited.

� Heng Yu, Junxian Shen, Congcong Miao, Jianping Wu, and Jilong Wang
are with the Institute for Network Sciences and Cyberspace, Tsinghua Uni-
versity, Beijing 100084, China, with the Beijing National Research Center for
Information Science and Technology (BNRist), Beijing 100084, China, and
also with the Peng Cheng Laboratory, Shenzhen, Guangdong 518066, China.
E-mail: {yuheng20, shenjx19}@mails.tsinghua.edu.cn, jamesmiao@tencent.
com, {jianping, wjl}@cernet.edu.cn.

� Zhilong Zheng and Chen Sun are with the Alibaba Group, Hangzhou
310052, China. E-mail: {zhiyou.zzl, qichen.sc}@alibaba-inc.com.

� Hongxin Hu is with the Department of Computer Science and Engineering,
University at Buffalo, the State University of New York, Buffalo, NY 14260
USA. E-mail: hongxinh@buffalo.edu.

� Jun Bi is with the Beijing National Research Center for Information Science
and Technology, Beijing 100084, China. E-mail: junbi@tsinghua.edu.cn.

Manuscript received 29 Aug. 2019; revised 12 Feb. 2021; accepted 17 Feb.
2021. Date of publication 3 Mar. 2021; date of current version 17 Mar. 2021.
(Corresponding authors: Congcong Miao and Jilong Wang.)
Recommended for acceptance by W. Yu Ph.D.
Digital Object Identifier no. 10.1109/TPDS.2021.3063613

2202 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021

1045-9219 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on August 06,2021 at 18:14:56 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6907-9958
https://orcid.org/0000-0001-6907-9958
https://orcid.org/0000-0001-6907-9958
https://orcid.org/0000-0001-6907-9958
https://orcid.org/0000-0001-6907-9958
https://orcid.org/0000-0003-3265-049X
https://orcid.org/0000-0003-3265-049X
https://orcid.org/0000-0003-3265-049X
https://orcid.org/0000-0003-3265-049X
https://orcid.org/0000-0003-3265-049X
https://orcid.org/0000-0003-2480-2350
https://orcid.org/0000-0003-2480-2350
https://orcid.org/0000-0003-2480-2350
https://orcid.org/0000-0003-2480-2350
https://orcid.org/0000-0003-2480-2350
https://orcid.org/0000-0001-8710-247X
https://orcid.org/0000-0001-8710-247X
https://orcid.org/0000-0001-8710-247X
https://orcid.org/0000-0001-8710-247X
https://orcid.org/0000-0001-8710-247X
https://orcid.org/0000-0002-8695-1047
https://orcid.org/0000-0002-8695-1047
https://orcid.org/0000-0002-8695-1047
https://orcid.org/0000-0002-8695-1047
https://orcid.org/0000-0002-8695-1047
https://orcid.org/0000-0002-4493-5145
https://orcid.org/0000-0002-4493-5145
https://orcid.org/0000-0002-4493-5145
https://orcid.org/0000-0002-4493-5145
https://orcid.org/0000-0002-4493-5145
mailto:yuheng20@mails.tsinghua.edu.cn
mailto:shenjx19@mails.tsinghua.edu.cn
mailto:jamesmiao@tencent.com
mailto:jamesmiao@tencent.com
mailto:jianping@cernet.edu.cn
mailto:wjl@cernet.edu.cn
mailto:zhiyou.zzl@alibaba-inc.com
mailto:qichen.sc@alibaba-inc.com
mailto:hongxinh@buffalo.edu
mailto:junbi@tsinghua.edu.cn

An SFC may be placed across multiple nodes for better
resource utilization [1]. Moreover, we can observe from
Fig. 2b that even switching the node assignment of two NFs
(P-B and P-C) could lead to different SFC performances.
This is because different NFs expose different performance
sensitivity to cross-node memory access.

(2) Bottleneck incurred by intra-node resource contention. As
shown in Fig. 1, CPU cores in each node may contend to
shared resources such as last-level cache (LLC), integrated
memory controller (iMC), and QPI. Some recent research
efforts [7], [8], [9] have revealed that co-locating multiple
NFs at the same node could decrease the throughput of a
single NF by 12.4 to 50.3 percent due to resource contention.

Above observations motivate us to design an optimal
mechanism to place multiple SFCs in a many-core system,
with the goal of achieving maximized aggregate throughput of
all SFCs. Many research efforts have been devoted to
addressing the placement problem in NFV [10], [11], [12].
However, they all focused on finding right servers for SFC
placement, while ignoring the placement inside one server.
Meanwhile, the problem of placing multiple threads in
many-core systems to achieve optimal execution perfor-
mance has been well studied in the system and architecture
community [13], [14], [15], [16]. However, they relied on fre-
quent migration of threads for optimality, while migrating
NFs in the NFV context incurs significant performance over-
head [17]. We present more details in Section 2.

In this paper, we propose Octans, an NFV orchestrator
for optimal SFC placement inside a server. To obtain the key
factors for optimization, we start by formulating the problem
with a Non-Linear Integer Programming (NLIP) model.
Then we identify the key factor for problem solving as evalu-
ating how much the throughput of an NF could be affected
by NFs in the same SFC or different SFCs, which we refer to
as performance drop index. This task imposes unique challenges
from two aspects: (1) to evaluate the throughput drop of NFs
caused by resource contention, we are challenged to find an
unified set of system-level metrics that could represent the
property ofmassive and heterogeneous NFs in NFV; and (2) NFs
with different chaining methods and NICs could introduce
different types of shared resources, which will affect the
aggregate performance of SFCs. We are challenged to pre-
cisely model NF performance under the SFC and multiple
NICs context. To address above challenges, we use a formal
approach to find performance metrics and construct a com-
prehensive model for accurate performance drop prediction.
Finally, due to the NP-hardness of our problem, we propose
a heuristic algorithm to quickly find an optimal or near-
optimal deployment solution for multiple SFCs. Besides, we

propose a greedy algorithm to support incremental deploy-
ment of SFCs.

Octansmakes the following major contributions:

� We identify the problem of SFC placement in a
many-core system, and present Octans, an NFV
orchestrator, to maximize aggregate throughput of
SFCs. We introduce related work and highlight the
novelty of Octans (Section 2).

� We formulate the optimization problem using an
NLIP model (Section 3). To evaluate the performance
drop index due to cross-node memory access and
intra-node resource contention, we introduce a for-
mal approach to find performance metrics, and
present an accurate model for performance drop pre-
diction. Finally, we design two online placement
algorithms to efficiently produce an optimal or
near-optimal solution for one-time and incremental
deployment (Section 4).

� We introduce the architecture and workflow of
Octans (Section 5). Extensive evaluation results
show that Octans can achieve reasonably prediction
results for different NFs (2.3 percent prediction error
on average) and different numbers of SFCs with var-
ied lengths (2.5 percent prediction error on average).
Moreover, Octans can improve the aggregate per-
formance comparing to two alternative placement
mechanisms by 27.1 to 45.2 percent for one-time
deployment and 20.9 to 38.1 percent for incremental
deployment. Finally, Octans has a high chance
(50�77 percent) to find an optimal deployment solu-
tion in a short time (Section 6).

2 RELATED WORK AND OCTANS NOVELTY

This section summarizes state-of-the-art researches on SFC
placement in NFV, optimal thread scheduling in many-core
systems, as well as works that touch upon the problem of
optimal NF placement on many-core systems. However, to
the best of our knowledge, Octans is the first to formally
model the optimization problem, thoroughly study perfor-
mance variation of NFs in many-core systems, and propose
two efficient algorithms to solve the problem.

SFC Placement in NFV.Many efforts have been devoted to
NF and SFC placement in NFV [18], [19], [20], [21], [22].
Moens et al. [10] presented an Integer Linear Programming
(ILP) model to minimize the number of used servers in a
service provider network. Kuo et al. [12] jointly considered
NF placement and chaining across servers to better utilize

Fig. 1. A high-level view of a typical many-core system.

Fig. 2. Effect of remote memory access on SFC throughput. The Net-
work Interface Card (NIC) is connected to Node #0. So we call Node #0
local node, and Node #1 remote node.

YU ETAL.: OCTANS: OPTIMAL PLACEMENTOF SERVICE FUNCTION CHAINS IN MANY-CORE SYSTEMS 2203

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on August 06,2021 at 18:14:56 UTC from IEEE Xplore. Restrictions apply.

network resource. Zhang et al. [20] jointly optimize SFCs
placement and request scheduling for resource utilization
and average latency. Li et al. [23] focused on providing
guaranteed performance for NFs by placing NFs in the right
server. Xiao et al. [18] utilize deep reinforcement learning to
optimize SFCs placement among multiple servers.

However, all existing works optimized SFC placement by
mapping NFs to the right servers. Regarding SFC placement
within a server, above works treated all CPU cores as equal,
and did not consider the widely adopted NUMA architec-
ture in modern many-core systems. In contrast, Octans

studies the problem of placing multiple SFCs in a many-
core system, in order to maximize aggregate throughput of
all SFCs in a server. Although cores inside one node can be
further split into groups (e.g., two logic cores share one
physical core), we disable hyper threading and ignore this
fact in our paper. Octans deeply understands NF perfor-
mance with respect to cross-node memory access and intra-
node resource contention. Therefore, Octans could work
with existing works to map right NFs to right CPU cores.

Optimal Thread Scheduling in Many-Core Systems. Optimiz-
ing thread-to-core placement to maximize execution perfor-
mance in a many-core system has been extensively studied
in the system and architecture community [13], [15], [24],
[25], [26], [27]. However, they are designed for different
purposes. For instance, Sanidhya Kashyap et al. [25] try to
implemente scalable blocking synchronization primitives.
Justin Funston et al. [24] targeted at improving the perfor-
mance of virtual containers. Besides, the key idea of most
above works is to measure the system performance metrics
(e.g., LLC misses and memory load) at runtime, and dynami-
cally re-schedule co-locating threads to different cores for
optimal thread-to-core mapping. For example, Zhuravlev
et al. [13] proposed dynamically scheduling co-locating
threads according to the change of LLC misses. Rao et al.
[15] suggested utilizing more metrics such as data locality
and sharing overhead, and converted them into a unified
parameter for optimal VM scheduling in a server.

A natural question is whether above solutions can be directly
adopted to solve the SFC placement problem. Our answer is no.
Above solutions achieve optimal thread execution perfor-
mance by frequently migrating threads across cores or
nodes. While threads are light-weight and easy to migrate,
most NFs in NFV are stateful and suffer from significant
performance overhead during NF migration [17], [28]. To
achieve high performance, advanced NFV systems place
NFs on dedicated CPU cores that cannot be scheduled by
the operating system. This makes it difficult to migrate NFs
among cores. Besides, the placement policy of normal OS
(e.g., Linux [29]) does not consider NFV related features
(e.g., SFC) and could lead to poor performance under most
conditions. Therefore, Octans maps NFs to cores by
designing a static placement mechanism [30]. Octans thor-
oughly investigates and models NF performance in a many-
core system and proposes two efficient placement algo-
rithms to maximize aggregate SFCs throughput.

SFC Placement in Many-Core Systems. Some recent re-
searches [31], [32], [33], [34] have revealed that placingNFs on
different cores in a NUMA system could result in different
performance. Sieber et al. [32] reported this problem by
presenting several evaluations in an NFV environment.

However, they did not present any solution for optimal place-
ment. Wang et al. [31] presented a locality-first-mapping algo-
rithm by placing an entire SFC in one node to avoid cross-
node overhead. However, the impact of intra-node contention
was not considered. Hu et al. [33] investigated how the perfor-
mance of pipelined software components varies when they are
placed on different cores. However, their solution is also
based on dynamically scheduling, which could be impractical
in real-world NFV systems as we discussed above. Li et al.
[34] proposed how to share CPU cores among NFs and tune
CPU quota for each NF at edge cloud. However, our target
scenario is high performance NFV in data center and eachNF
monopolizes a CPU core.

3 PROBLEM FORMULATION AND CHALLENGES

In this section, we first formulate the problem with a NLIP
model. Then we identify the key factors for problem solving
as evaluating NF performance drop index, and introduce
the challenges in retrieving this index in many-core systems.

3.1 Formulation of the Optimal Placement Problem

Placement Requirement of SFCs. Placement requirement of an
SFC is usually described as an ordered sequence of NFs in
the chain. Assume there is a set of SFCs S that require to be
deployed, each of which is associated with an array of
chained NFs eðiÞ, where i 2 S.

A Many-Core System. Commonly in a many-core system,
there are multiple nodes numbered incrementally and
equipped with identical amounts of CPU cores. Besides,
each node could be independently equipped with zero or
multiple NICs. We generalize a many-core system with K
nodes, each node has N cores and aggregated throughput
of CðkÞ from its NICs, where k 2 K.

Performance Decomposition. We set a binary variable xk
ij to

indicate whether NF j of chain i is located on node k. When
this NF runs without contention, the performance it can
achieve is referred to as ideal performance and is defined as Pk

ij.
As introduced in some work [7], [23], Pk

ij of each NF can be
measured by placing the NF on different nodes when no con-
tention exists. Furthermore, when anNF co-locates with other
NFs in node k, its performance is referred to as interfered per-
formance and is defined as fk

ij. It is obvious that the interfered
performance of an NF is a reduced value of ideal perfor-
mance. Thus, we define a performance drop index (denoted by
�k
ij) to relate these two variables for NFs that locate on node k

(shown in Eqn. (2)). Note that �k
ij is not a constant and varies

with different SFCs placement solutions.
Similar to an end-to-end system, the processing capacity

of an SFC is determined by the bottleneck element in the
chain [35], i.e., the NF with the lowest performance. Hence,
the objective to maximize the aggregate performance across
all required SFCs when deploying is formulated as

max
X
i2S

min
j2eðiÞ
ffk

ijg; 8k 2 K; (1)

where

fk
ij ¼

X
k2K

xk
ij � Pk

ij � ð1� �k
ijÞ; 8i 2 S; j 2 eðiÞ; (2)

2204 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on August 06,2021 at 18:14:56 UTC from IEEE Xplore. Restrictions apply.

s.t.

X
k2K

xk
ij ¼ 1; 8i 2 S; j 2 eðiÞ (3)

X
i2S;j2eðiÞ

xk
ij � N; 8k 2 K (4)

X
i2S

fk
i1 � CðkÞ; 8k 2 K: (5)

More specifically, Eqn. (2) describes the relationship
between ideal performance and interfered performance.
Constraint (3) prevents any NF from being repeatedly or
not deployed. Constraint (4) specifies the maximum deplo-
yed number of NFs cannot excess the capacity of cores in
each node during deployment. Constraint (5) specifies the
maximum aggregated throughput of SFCs receive from
NICs of one node cannot excess the capacity of NICs on that
node during deployment.

3.2 Key Factors for Problem Solving
and Challenges

Problem formulation gives us a solid starting point for find-
ing optimal placement solution for S. However, a critical
parameter, i.e., �k

ij needs to be predicated for problem solv-
ing since we cannot try all possible placement solutions to
directly get their value. However, predicting performance
drop in the NFV context is not-trivial due to the following
three challenges.

The Heterogeneity of NFs. As introduced in Section 2, NFs
are usually stateful and deployed on dedicated cores, which
reveals that the placement should be static to avoid distrac-
tions from other complexities, such as state migration and
careful packet buffering design. For the prediction of static
placement, the inputs we have are only the types and counts
of NFs (i.e., which NFs and how many of them) that might
be co-located. However, it is tricky to adopt these inputs

directly for the prediction model since they are not quantifi-
able. Some work [7] shows that we can use a manually ana-
lyzed and calculated system-level performance metric value
(i.e., LLC references per packet) to quantify an NF. How-
ever, manual analysis and metric value calculation could be
burdensome and platform dependent. Furthermore, this
problem could be worse in the NFV context because NFs
are usually heterogeneous and diverse.

SFC Complicates the Prediction. Performance drop of an
application (NF) in an interference environment is usually
related to the shared resources contention and its competi-
tors [13], [15]. However, the chain of an SFC could change
the shared resources and competitors of an NF, in contrast
to which NFs are separated.

For example, consider six co-locating NFs on two nodes
(the nodes where packets come in are usually called local
nodes, others are relatively remote nodes), as shown in
Fig. 3. For separated NFs, of which (i) in the local node
can be considered as sharing LLC between NF1�NF3 and
main memory controller between NF1�NF6 (Fig. 4a), and
(ii) in the remote node can be considered as sharing QPI
between NF4�NF6 (Fig. 4b). We can see that NFs in the
same node have the same type of shared resources and
competitors, thus one general model for these NFs might
be accurate [7].

However, this model could be inaccurate when NF
chaining is introduced. Fig. 5a shows that (iii) cross-node
chaining between two NFs can change shared resources of
the subsequent NFs (i.e., NF2) in a local node to be more
stressed on memory controller and almost no LLC benefit,
which could incur performance drop. Moreover, Fig. 5b
shows that (iv) cache-prefetching chaining can change shared
resources of the subsequent NFs (i.e., NF6) in a remote node
to be less competing on QPI and benefit the performance
improvement from memory cache hits in the remote LLC.

Multiple NICs Complicate the Prediction. In a server with
multiple NICs which could locate at different nodes, the
traffic of an NF could come from different NICs. However,
the way of traffic entering a server can also change the
shared resources and competitors of an NF. For instance,
we consider the example in Fig. 4 except that both nodes are
equipped with NICs. Since the NIC stores traffic to memory
of the same node, both nodes could become local node for
some NFs at runtime. If the traffic of an NF comes from
another NIC, such as NF2 in Fig. 6a, it no longer benefits
from the LLC and competes for QPI and memory controller.
Similarly, as shown in Fig. 6b, the competing resources of
NF5 also changes to LLC and memory controller.

Therefore, we can see that more specific considerations
are required in the prediction model due to the possible

Fig. 3. A placement example on two nodes.

Fig. 4. Shared resources for separated NFs, which are highlighted with
orange-red.

Fig. 5. Different shared resources for the same NFs because of different
SFC methods.

YU ETAL.: OCTANS: OPTIMAL PLACEMENTOF SERVICE FUNCTION CHAINS IN MANY-CORE SYSTEMS 2205

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on August 06,2021 at 18:14:56 UTC from IEEE Xplore. Restrictions apply.

changes on shared resources and competitors introduced
by SFC and multiple NICs.

Octans. To address above challenges, we propose
Octans. For performance prediction, Octans takes the
performance metric of each NF as the input of prediction
model as well as considering the specific features intro-
duced by SFC and multiple NICs. Moreover, Octans

provides two placement algorithms to search optimal or
near-optimal solutions for online deployment, including
a heuristic-based algorithm for quickly one-time deploy-
ment and a greedy algorithm for incremental deploy-
ment. Next, we will introduce the design of Octans in
detail.

4 OCTANS DESIGN

In this section, we present the design of Octans. We first
show how to automatically find performance metrics for
NFs even they are heterogeneous, and what metric is used
in Octans (Section 4.1). Then, we introduce the perfor-
mance prediction model for NFs and extend it to SFC and
multiple NICs (Section 4.2). Finally, we present two online
placement algorithms for one-time and incremental deploy-
ment (Section 4.3).

4.1 Relating NFs With Performance Metrics

As mentioned in Section 3, the type of NFs cannot be
directly used as the input of prediction model. Instead, we
should find some performance metrics to describe an NF.
Moreover, as shown in Table 1, many potential system-level
metrics can be adopted [15], [38]. Therefore, we should for-
mally and automatically detect the appropriate metrics with
some criterions. To achieve this goal, we first identify the
requirements these metrics should meet.

R1: The metric value should not vary even with contention.
Since the metric we try to find should be able to describe an
NF, its value should not vary when co-locating with other
NFs. For example, if a metric value is measured as v0 when
an NF runs solely, all values (v1 � v6) measured when co-
locating with other 1�6 NFs should be near to v0.

R2: The metric value should be sensitive to NF changes. This
describes an intuition that different NFs should have differ-
ent metric values. Here, we make a mild assumption that
the NFs with similar intrinsic properties such as program
complexity can achieve similar performance. Therefore, if
the measured performance and metric values of a set of NFs
when they run solely are ðp1; p2; p3; . . .Þ and ðv1; v2; v3; . . .Þ,
and p1 6¼ p2 6¼ p3, the metric values should be approxi-
mately regarded as v1 6¼ v2 6¼ v3.

With the help of above two requirements, we can use a
general but formal way to find metrics. We re-interpret the
two requirements as,

� Near-zero variance of metric values when measured in com-
peting environment: Guided by R1, for each candidate
metric, we calculate the variance (denoted by r2i) of its
measured values when co-locating an NF with differ-
ent types and numbers ofNFs, i.e.,

r2i ¼
PN

j¼1ðmij � miÞ2
N

; (6)

where, mij is the jth sample of the value of metric i
and mi is the mean value of all N samples. Moreover,
all values used in this equation are normalized to
[0,1].

� Strong correlation between metric value and performance
when measured in non-competing environment: Guided
by R2, there should exist strong correlation between
metric value and performance when an NF runs
solely (i.e., ideal performance). For concise expres-
sion, we abuse Pj to define the ideal performance of
NF j. Some work [16], [38] has demonstrated that
there is linear correlation coefficient between the value
of some metrics and the performance. In our work,
we follow their findings and assume this linear cor-
relation. We adopt Pearson Correlation Coeffi-
cient [39] to calculate the correlation (denoted as
rðPj;miÞ), i.e.,

rðPj;miÞ ¼ covðPj;miÞ
sPjsmi

; (7)

where, covðPj;miÞ is the cross-correlation of NF j
between the ideal performance and metric i , and
s2
Pj
¼ covðPj

2Þ, s2
mi
¼ covðm2

i Þ are the variances of dif-
ferentmeasured values of performance andmetric.

Metrics Used in Octans. We measured a bunch of metrics
and performance values according to Eqns. (6) and (7). The
candidate metrics we used are from two performance metric
profiling tools, i.e., OProfile [36] and Intel Performance
Counter Monitor (PCM) [37]. Table 1 shows a subset of these
metrics. Since some metric values are accumulated from NF
launching (i.e., inst_retired and resource_stalls), they are
divided by the number of processed packets. We empirically

Fig. 6. Different shared resources for the same NFs because of differ-
ent NICs.

TABLE 1
A Non-Exhaustive List of Commonly Used Metrics, Which can

be Profiled by Existing Tools Such as OProfile [36]
and Intel PCM [37]

Metric Description

CPU_CLK_UNHALTED Clock cycles when not halted

INST_RETIRED Number of instructions retired

RESOURCE_STALLS Cycles during which resource stalls
occur

LLC_MISSES Cache misses in LLC

L2_MISSES Cache misses in Level 2 cache

IPC Instructions per CPU cycle

2206 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on August 06,2021 at 18:14:56 UTC from IEEE Xplore. Restrictions apply.

set r2i � 0:01 as near-zero variance and rðPj;miÞ
�� �� � 0:9 as

strong correlation. Metrics that meet both conditions are con-
sidered as appropriate ones.

Experiments based on sampled data reveal that the
appropriate metric is resource_stalls. Note that we only
choose the best metric for easier modeling. Nevertheless,
we find that it is enough for our model to achieve accurate
prediction (Section 6.2). Besides, we check whether this met-
ric meets the two requirements defined before. Fig. 7a
shows that for all four NFs, resource_stalls remains almost
unchanged as the number of competing NFs increases,
which meets the first requirement. Fig. 7b shows that
resource_stalls and the ideal performance have near linear
relationship, which can meet the second requirement. Fur-
thermore, we try to understand this metric from an architec-
ture perspective. Since this metric records the cycles of core
resource related stalls (i.e., lacking buffer for load/store
instructions and branch misprediction recovery), it does not
vary due to contention of shared resource (i.e., LLC and
memory controller) and is highly related to intrinsic pro-
gram structure and complexity of NFs. Note that this metric
shows per packet resource stalls, it is not affected by the
incoming packet rate. Therefore, we choose resource_stalls to
represent different NFs, and use it as the input of our pre-
diction model.

4.2 Prediction Modeling

4.2.1 Preliminary Analysis of the Prediction Model

Contention to shared resources is the root cause of perfor-
mance degradation for co-locating NFs in a server [7], [15],
[38]. According to observations from Section 3.2, we classify
competing resources into two types of factors that could
cause performance degradation including LLC misses and
memory contention (including memory controller and QPI).
Moreover, we utilize the system-level metric of NFs (i.e.,
resource_stalls) to predict performance drop index � (we
reuse � here for brevity). Next, we first show how to quan-
tify the competing level introduced by NFs under one type
of competing resource. Based on that, we provide the pre-
diction model for � with multiple competing resources
under NUMA architecture. Then, we refine the prediction
model to improve prediction accuracy according to SFC
characteristics. Finally, we extend the prediction model to a
server with multiple NICs.

4.2.2 Prediction Model for Separate NFs

To predict the performance drop for separate NFs, we begin
with the simplest prediction model with one type of shared
resource. Then we extend this prediction model to multiple

competing resources. Finally we provide a general predic-
tion model for separate NFs under NUMA architecture.

Calculating the competing level introduced by NFs under one
type of shared resource. We define a competing level function
f to map the metric value of competing NFs to performance
drop. To explore this function, we first check the relation-
ship between the competing level and metric value, i.e.,
how the competing level varies when the metric value
changes. It is hard to directly capture the change of compet-
ing level. Instead, we use the performance drop to imply it.
Fig. 8a shows that for different NFs, a smaller resource_stalls
(NF with higher ideal performance) incurs higher perfor-
mance drop, i.e., higher competing level. From this observa-
tion, we define a property for this function,

� Property 1: The function shows negative correlation to
resource_stalls.

Furthermore, we check that how the competing level
varies with the number of NFs changes, i.e., aggregate
resource_stalls. Fig. 8b shows that with the number of com-
peting NFs increases, the performance drops more, i.e.,
higher competing level. Moreover, we can observe that the
increasing gradient of performance drop becomes smaller.
Therefore, we define another property for this function,

� Property 2: The function shows increment property
and decreasing gradient with aggregate resource_stalls
increases.

With the help of above two properties, we can approxi-
mately describe the competing level function as

fðfx1; x2; . . . ; xngÞ �
X

1�k�n

1

xk
: (8)

It can be easily proved that the function in Eqn. (8) meets the
two defined properties. Although this function seems simple
and intuitive, our evaluation (Section 6) shows it is accurate
enough to describe the competing level in predictionmodel.

Modeling performance drop index under multiple competing
resources. According to [38], in an interference environment,
we could model the performance drop as a linear function
of different competing resources. Therefore, we define � as

� ¼ a � fðfmiji 2 NFLLCgÞ þ b � fðfmiji 2 NFmemgÞ þ C;

(9)

where, NFLLC and NFmem indicate the competitors on LLC
and memory. a, b and C are parameters to aggregate the
effect of competing level on LLC and memory. Note that
even with the same competing level in share resource, the

Fig. 7. Requirement validation for the metric resource_stalls.

Fig. 8. Performance drop with different NF type and number.

YU ETAL.: OCTANS: OPTIMAL PLACEMENTOF SERVICE FUNCTION CHAINS IN MANY-CORE SYSTEMS 2207

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on August 06,2021 at 18:14:56 UTC from IEEE Xplore. Restrictions apply.

performance of some NFs drops a lot while others almost
not be affected. Therefore, we use different parameter
groups for different type of NFs to distinguish their sensi-
tivity to competing resources.

A general prediction model for separate NFs under NUMA
architecture. Since every NF could be placed on all nodes,
there should be distrinct parameter groups for the local and
remote nodes due to the asymmetric cost of LLC misses and
memory access [14]. Thus, we define (ai

l , b
i
l , C

i
l) for the case

that NF i is deployed in the local node, and (ai
r, b

i
r, C

i
r) for

the case of remote nodes. Here, we adopt the same parame-
ters for all remote nodes. It is because that all remote nodes
use the same interconnection (i.e., QPI) to access the mem-
ory on local node.

Let fmlg and fmrg denote the measured resource_stalls of
those NFs locate at a local node (NFl) and a remote node
(NFr). Consider an NF in a local node shown in Fig. 4a, it will
compete for LLCwith the NFs in the local node, and compete
for memory controller with all NFs inside the same server.
For an NF in a remote node, we set its LLC misses to “1”, i.e.,
no cache hit for packet access. This is because it cannot access
the cache on the local node. Moreover, since the bandwidth of
QPI is lower than the main memory controller, we consider
QPI as the competing resource and the NFs in the remote
node as the competitors. Therefore, we construct themodel as

�i ¼ ai
l � fðfmlgÞ þ bi

l � fðfmlg [fmrgÞ þ Ci
l ; 8i 2 NFl

ai
r � 1þ bi

r � fðfmrgÞ þ Ci
r; 8i 2 NFr

�
:

(10)

4.2.3 Fine-Tuning Prediction Model for SFC

Characteristics

As mentioned in Section 3.2, SFC will complicate the predic-
tionmodel since different chainingmethods (e.g., cross-node)
could change the shared resources and competitors of an NF.
Besides, the competing level introduced by an NF could
change since it is related to the current throughput. However,
the throughput of NFs in an SFC are potentially imbal-
anced [40] and the chaining methods could limit the through-
put they can achieve. To address these problems, we first tune
the competing level introduced by an NF due to imbalanced
throughput, then we tune the prediction model to reflect the
shared resource and competitors changes.

(1): Tuned model for throughput limitation. When multiple
NFs are chained to form an SFC, the throughput of subse-
quent NFs cannot exceed their previous NFs. That is to say
some NFs could process far less traffic than their maximum
capacity. For example in Fig. 9, there are three NFs (NF1,
NF2 and NF3) and their capacity are 1P, 0.3P and 0.7P,
respectively. When they are chained sequentially, the
throughput of NF3 can only achieve 0.3P rather than 0.7P.
Furthermore, the competing level introduced by an NF
varies as the throughput changes. In order to explore the

relationship between them, we co-locate different NFs with
a competing NF (i.e., Router) in both nodes and change its
throughput. As shown in Fig. 10, in both local and remote
node, when the throughput of competing NF increases, the
performance of co-locating NF drops more, i.e., higher com-
peting level. However, the value we used in competing level
function for each NF represents the competing level intro-
duced with the maximum throughput.

To tune the prediction model for throughput limitation
imposed by SFC, we add an coefficient h to the competing
level introduced by an NF. This coefficient is the ratio of
actual throughput to its maximum throughput on that
node. However, we cannot get the actual throughput of an
NF before deployment. Thus, we use the minimal through-
put of its previous NFs (including itself) in an SFC as its
actual throughput, which could represent an upper bound
of competing level. Take Fig. 9 as an example, coefficients of
NF1 and NF2 are “1” while NF3’s coefficient is set to “3/7”.
Thus, we refine the competing level function as

fðfx1; x2; . . . ; xngÞ �
X

1�k�n
h � 1

xk
; (11)

where

h ¼ min1�m�’2ðkÞfP’1ðkÞmg
P’1ðkÞ’2ðkÞ

; (12)

xk is used to represent the metric (resource_stalls) of kth NF,
’1ðkÞ and ’2ðkÞ are functions to map the kth NF to the
’2ðkÞth NF in SFC ’1ðkÞ. P’1ðkÞ’2ðkÞ represents the ideal per-
formance of ’2ðkÞth NF in SFC ’1ðkÞ. Note that h is a con-
stant for a special SFC once the placement is determined.

(2): Tuned model for chaining methods. As introduced in
Section 3.2, two chaining methods should be considered.
The first one is cross-node chaining. As shown in Fig. 5a, for
an NF (i.e., NF2) in the local node, its upstream NF is in the
remote node. This makes the NF has no chance to read
packets from its local LLC. Thus, we should set its cache
misses to “1”, i.e.,

�i ¼ ai
l � 1þ bi

l � fðfmlg [fmrgÞ þ Ci
l : (13)

The second method is cache-prefetching chaining. As
shown in Fig. 5b, for an NF (i.e., NF6) in the remote node,
we do not regard it as those NFs (e.g., NF4) that have no
chance to read packets from LLC. This is because that its
upstream NF (i.e., NF5) could load packets into remote LLC
as mimicking a cache prefetcher [41]. As a result, NF4 has
chance to access packet from remote LLC and no longer to

Fig. 9. Throughput limitation imposed by SFC. P represents the perfor-
mance unit for NFs.

Fig. 10. Performance drop with increasing throughput.

2208 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on August 06,2021 at 18:14:56 UTC from IEEE Xplore. Restrictions apply.

be “1” for LLC misses. Moreover, We consider the NFs in
the remote node as its LLC competitor. Thus, we tune the
model for cache-prefetching chaining as

�i ¼ ai
r � fðfmrgÞ þ bi

r � fðfmrgÞ þ Ci
r: (14)

In summary, whether an NF in an SFC can benefit from LLC
is determined by the relative location to its upstream NF. If
its upstream NF is in the same node, it can be benefit from
LLC due to cache-prefetching from its upstream NF, and
consider NFs in the same node as its LLC competitors. Oth-
erwise, it suffers from cache misses no matter it locates at
local or remote node. Thus, we provide a general prediction
model for different chaining methods as

�i ¼ ai
l � dil þ bi

l � fðfmlg [fmrgÞ þ Ci
l ; 8i 2 NFl

ai
r � dir þ bir � fðfmrgÞ þ Ci

r; 8i 2 NFr

�
;

(15)

where

dil ¼ fðfmlgÞ � yi þ ð1� yiÞ (16)

dir ¼ fðfmrgÞ � yi þ ð1� yiÞ; (17)

yi is a binary variable to indicate whether its upstream NF
located at the same node. d describes cache contention of an
NF, which could be fðfmgÞ or ”1”.

Moreover, since NFs in a cache-prefetching chain share
the same piece of LLC, we regard these NFs as only one
competitor to other NFs for LLC sharing. For example in
Fig. 11, since the subchain consisting of NF4, NF5 and NF6
accesses the same packet memory sequentially, they only
occupy one piece of cache. Currently, we use the first NF
(i.e., NF4) in this subchain to calculate competing level.

4.2.4 Extending Prediction Model to Multiple NICs

To support higher aggregate throughput, many servers
are equipped with multiple NICs which could locate at
different nodes. However, as mentioned in Section 3.2,
multiple NICs will complicate the prediction model since
the way of traffic entering a server could change the
shared resources and competitors of an NF. Furthermore,
the shared resources of an NF are related to its local
node, which could change for different NFs and can only
be known at runtime. To address this problem, we treat
the NIC which receives traffic for NFs as a special NF
chained before these NFs, except that this special NF can
only be located at nodes that are equipped with NICs.
Although this special NF does not introduce competition

for LLC (or only little) and memory, it changes the shared
resource of NFs in a server.

Algorithm 1.Heuristic Placement Algorithm

Input : ðSÞ - SFC sets
Output :X - Placement of each NF on the SFCs
1: // 1: Initial placement

2: Xinit Binary-search all possible placement for s 2 S with Con-
straint 3, 4 and 5.

3: // 2: Move some subchains in the remote nodes to

local node

4: Perfopt 0 // The optimal performance
5: foreach x 2 Xinit do
6: ðSlocal; SremoteÞ The SFCs placed in the local and remote

node from x
7: Update_Placement (Slocal; Sremote)
8: DFS(Slocal; Sremote)
9: function DFS (Slocal; Sremote)
10: foreach s 2 Sremote do
11: NFbottleneck minfNF 2 sg // The NF with lowest

performance

12: ssubchain s½0 : NFbottleneck	 // The subchain

13: if Enough cores for ssubchain in the local node then
14: ðtmp Slocal; tmp SremoteÞ ¼ ðSlocal þ Ssubchain; Sremote

�SsubchainÞ
15: Update_Placement(tmp Slocal; tmp Sremote)
16: DFS(tmp Slocal; tmp Sremote)
17: function Update_Placement (Slocal; Sremote)
18: Perfprediction Performance prediction from Eqns. (18), (19),

(20) and (21)
19: if Perfopt < Perfprediction then
20: Perfopt ¼ Perfprediction
21: X ¼ fSlocal; Sremoteg // updating placment

As shown in Fig. 6, the NIC (highlighted with yellow)
which receives traffic for an NF (i.e., NF2) acts as a
packet generator and sends traffic to its subsequent NF.
Since the NIC can send traffic to LLC (in the same node)
directly (with Intel DDIO [42]), it will share LLC with
those NFs in the same node. Therefore, if its subsequent
NFs locate at the same node, those NFs would benefit
from LLC hits (Fig. 6b), or they could suffer from LLC
misses (Fig. 6a). Fortunately, we can reuse the tuned
models (i.e., Eqn. (15)) since NICs only changes the LLC
sharing of its subsequent NFs, and we can regard the
NIC as a special NF to mimic LLC impact. However,
memory contention of NFs in an SFC could be changed
by the location of this special NF. In each node, if the
subsequent NFs of an SFC locate at the same node with
this special NF (i.e., the node with a NIC), they compete
for local memory, which we refer to as local NF (i.e.,
NF5 in Fig. 6b). Otherwise, they compete for QPI and
remote memory, which we refer to as remote NF (i.e.,
NF2 in Fig. 6a). What needs to be noted here is that we
have changed the definition of local and remote NFs,
which is only determined by their relative location to the
special NF. Therefore, we extend the prediction model
for multiple NICs in each node as

�i ¼ ai
l � dil þ bi

l � uil þ Ci
l ; 8i 2 NFl

ai
r � dir þ bi

r � uir þ Ci
r; 8i 2 NFr

�
; (18)

Fig. 11. LLC sharing for a subchain.

YU ETAL.: OCTANS: OPTIMAL PLACEMENTOF SERVICE FUNCTION CHAINS IN MANY-CORE SYSTEMS 2209

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on August 06,2021 at 18:14:56 UTC from IEEE Xplore. Restrictions apply.

where

dil ¼ dir ¼ fðfmlgÞ � yi þ ð1� yiÞ (19)

uil ¼ fðfml
lg [fmr

l gÞ (20)

uir ¼ fðfml
rgÞ; (21)

dil and dir indicate LLC contention for local and remote NFs.
Since all NFs on this node compete for LLC (fðfmlgÞ) and
whether an NF can benefit from LLC is only determined by
the relative location of its upstream NF (yi), the LLC conten-
tion for local and remote NFs imposes no difference. uil indi-
cates memory contention for local NFs. These NFs compete
for memory with NFs whose memory (i.e., packet buffer)
locate at this node, no matter the NF itself locates on this
node (fðfml

lgÞ) or other nodes (fðfmr
l gÞ). uir indicates mem-

ory contention for remote NFs. These NFs only compete for
QPI with other remote NFs on this node (fðfml

rgÞ).
One can see that if measuring samples are given, includ-

ing the placement of SFCs and performance drop index of
each NF, it is easy to approximate the parameters (a;b; C)
for each NF. In Octans, we use a fast learning algorithm,
Least Mean Squares (LMS), to approximate them.

4.3 Online Placement Algorithms

So far, we have constructed the prediction model for the
performance drop index in Eqn. (2), which makes our for-
mulation solvable. A naive approach to find optimal solu-
tion is brute-force search, but it can be expensive. Since we
can see that its time complexity is OðKNÞ (K is the total
number of available nodes and N is the total number of NFs
in all SFCs). However, the network operator usually needs
fast response for placement requests [8], which implies a
short time for solution searching. Furthermore, our problem
is a Multidimensional Assignment Problem (MAP) (an NF
can be assigned to any one of multiple nodes), which is a
known NP-complete problem [30]. There is no polynomial-
time algorithm to find an optimal solution. Besides, in some
cases, we need incremental deploy SFCs to servers since not
all placement requests come at the same time and we could
utilize severs which is underloaded to deploy more SFCs.
Therefore, we first propose a heuristic algorithm to find the
optimal or near-optimal solution to deploy multiple place-
ment requests simultaneously, then we also propose a
greedy algorithm to support incremental deployment.

Our heuristic algorithm follows two major steps: (1) ini-
tial placement: chain-based search. Instead of searching place-
ment for all NFs, we first try to place an entire chain on the
same node. It is based on an important observation that a
cache-prefetching chain always has lower performance
drop against a cross-node chain from Eqns. (13) and (14).
This is because that the output of fðfmlgÞ and fðfmrgÞ is
always smaller than 1; and (2) moving subchains in a remote
node to the local node. A common sense is that an NF in the
local node usually has higher performance than in a remote
node due to benefiting of lower memory access latency (i.e.,
iMC is faster than QPI). Hence, to improve the chance to
find an optimal solution based on the initial placement, we

try to move some subchains in the remote node to the local
node. Besides, since the throughput of an SFC is determined
by its bottleneck-NF (i.e., with the lowest performance), the
split point we choose in an entire chain to form a subchain
is the bottleneck-NF to improve its performance.

We show the heuristic algorithm in Algorithm 1. It first
produces the initial placement via binary-search for all possi-
ble placements with entire SFCs across all nodes (line 2).
Then, it iterates each initial placement to find potential place-
ment with higher aggregate performance by moving some
subchains from a remote node to the local node (lines 5-8).
We adopt deep-first search (DFS) to find the bottleneck-NF
for each SFC in remote nodes (lines 9-16), meanwhile update
the optimal solution if the moving operation produces
higher performance (lines 17-21).

Although this heuristic algorithm could find an optimal
or near-optimal placement solution for multiple SFCs in a
short time, it cannot be directly applied to incremental
deployment. This is because it trades performance for time
complexity and could miss optimal solution. However, we
only need to deploy one SFC at a time in incremental
deployment and the length of SFC is usually less than seven
NFs [43]. Therefore, the optimal placement solution of an
SFC is likely to be found quickly even with brute-force
search since we adopt static placement mechanism and do
not change deployed SFCs. For this reason, we propose a
greedy algorithm and apply optimal placement for each
SFC in incremental deployment.

Algorithm 2. Greedy Placement Algorithm

1: Input: (NF1,NF2; . . . ; NFn) - SFC and deploying server.
2: Get the status of all deployed SFC sets on the deploying

server, including their placement and used NICs.
3: Binary-search all possible placement for (NF1,NF2; . . . ; NFn)

and predict the aggregate throughput of this server based on
the prediction model with Constraint 3, 4 and 5.

4: Output: placement for (NF1, NF2; . . . ; NFn) with highest
aggregate throughput.

We show the greedy algorithm in Algorithm 2. When it
receives a SFC (line 1), it first gets all deployed SFC sets and
their status on the server (line 2). Then, it searches all possi-
ble placement solutions and predicts throughput based on
our models (line 3). Finally, it chooses the solution with
highest aggregate throughput as output (line 4).

5 OCTANS ARCHITECTURE AND WORKFLOW

According to the design in Section 4, we present the architec-
ture and workflow of Octans as shown in Fig. 12. Octans
takes SFC placement requests on a specific server (i.e., S) as
the input, and checks whether or not existing new NFs in
inputing SFCs. If existed, they are sent to a sandbox environment
to calculate the metric value (i.e., resource_stalls) and generate
performance model, which is supported by two major mod-
ules, Metric Profiler and Model Generator; If not, requests are
immediately sent to Placement Engine, to calculate placement
solution.Next,we show the detail of these threemodules.

Metric Profiler. Metric Profiler automatically profiles
resource_stalls for every NF. In current implementation, it
uses OProfile [36] to measure the count of resource_stalls.

2210 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on August 06,2021 at 18:14:56 UTC from IEEE Xplore. Restrictions apply.

Since Octans focuses on the performance in throughput,
we generate 10 Gbps traffic (this rate can be set) with mini-
mum size packets (i.e., 64B). Metric Profiler records the total
number of packets it processed (excluding dropped pack-
ets) and the total count of resource_stalls after a period of
running, then calculates resource_stalls per packet as the
metric value.

Model Generator. Model Generator generates the three
parameters (a;b; C) for every NF. First, it runs each NF
solely to record the performance as ideal performance (i.e.,
Pk
ij in Eqn. (2)). Second, it co-locates this NF with different

types and numbers of NFs (including itself) to measure the
interfered performance fk

ij, meanwhile records the perfor-

mance drop index with calculation
Pk
ij
�fk

ij

Pk
ij

as sampled data.
After sampling enough data (this might take a long time,
but it can be completed offline), this generator adopts LMS
algorithm to approximate the parameters. Finally, it
updates the record of Prediction Models, where stores the
prediction model for every NF.

Placement Engine. Placement Engine runs the online
placement algorithms (Section 4.3). It takes the placement
requests (i.e., S) as input, and retrieves the model of each
NF from Prediction Models. After an optimal or near-optimal
solution is found, it launches the required NFs in SFC
requests on assigned CPU cores of target servers.

6 IMPLEMENTATION AND EVALUATION

6.1 Implementation and Experiment Setup

Implementation. We have implemented a prototype of
Octans. The infrastructure we used to run NFs and SFCs is
built on a high-performance NFV platform, OpenNetVM [3].
The NFs we used include IPv4Router (Router), Firewall (FW),
NIDS, and VPN. The three modules in Octans are written
in Python language.

Experiment Setup. We run Octans and OpenNetVM on
the same server, which is a two-node server that is
equipped with two Intel Xeon E5-2650 v4 CPUs (2.20 GHz,
12 physical cores), 128 GB total memory, and two dual-port
10G NICs (Intel X520-DA2, 40 Gbps in total). We use DPDK
Pktgen [44] to generate traffic, which runs on another server
that has the same configuration as the previous one. Both
servers run Ubuntu 14.04 (with kernel 3.16.0-30), and DPDK
version 18.02. The two NICs are located on Node-0, hence
we treat Node-0 as the local node and Node-1 as the remote

node. We allocate 1 core to Octans, 1 core to the open-
NetVM manager, and 4 cores for networking I/O and
packet forwarding. Therefore, we have 6 available cores in
the local node and 12 available cores in the remote node.
Except for special statement, we use the same setup for all
evaluations.

We evaluate Octanswith the following goals.

� Demonstrate that Octans can achieve accurate per-
formance drop prediction for a wide range of NFs
and SFCs even with multiple NICs on different
nodes.

� Demonstrate that Octans can improve aggregate
performance by searching optimal or near-optimal
placement solution for one-time and incremental
deployment, compared with two alternative place-
ment solutions.

� Demonstrate that Octans can search the placement
solution within a short time, and has reasonable
chance to find the optimal solution.

6.2 Prediction Accuracy

To demonstrate the prediction accuracy of performance
drop for NFs and SFCs, we compare the performance drop
between our prediction value (�predicted) and the measured
value (�measured) by deploying them into our testbed. We cal-

culate the prediction error as
�measured��predictedj j

�measured .

Prediction Accuracy for Different NFs. We first evaluate the
prediction accuracy for separated NFs when co-locating
with competitors. We use a synthetic NF (ideal performance
between NIDS and Firewall) as the co-locating NF (competi-
tor) for our evaluated NFs. Fig. 13a shows the prediction
error of the four NFs when they co-locate with different
number of competitors. From this figure, we can see rea-
sonablely accurate results, an average of 2.9, 3.3, 2.0 and
1.0 percent deviation from the measured performance drop
for Router, Firewall, NIDS and VPN, respectively. Also, we
can observe that with the number of competitors increases,
the prediction results become more accurate. For example,
the prediction error reduces from 8.7 to 2.3 percent for the
Router. This is because the gradient of performance drop
becomes smaller with the competing level increases, and
our prediction model can capture this feature.

Prediction Accuracy for Different SFCs. We then evaluate
the prediction accuracy for four customised SFCs and mark
them as: SFC-1 (Router, Firewall, NIDS, VPN), SFC-2 (Fire-
wall, Router, NIDS, Firewall), SFC-3 (NIDS, Router, Fire-
wall, NIDS), and SFC-4 (Router, NIDS, Router, Firewall).

Fig. 12. Architecture and workflow of Octans.

Fig. 13. Prediction accuracy for separate NFs and SFCs.

YU ETAL.: OCTANS: OPTIMAL PLACEMENTOF SERVICE FUNCTION CHAINS IN MANY-CORE SYSTEMS 2211

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on August 06,2021 at 18:14:56 UTC from IEEE Xplore. Restrictions apply.

We randomly generate 10 types of placement for every SFC.
Fig. 13b shows the average prediction error of these SFCs.
We can see that all of them have reasonably accurate results,
and the worst-case of average error (SFC-3) is less than
4.7 percent.

Effect of the Varied Length of SFC. To show more reliable
prediction results, we evaluate whether the length of SFC
has the potential to incur higher prediction error. We use
four SFCs, and NFs in each SFC are the same. For different
lengths of SFC, we randomly generate up to 20 types of
placement. Fig. 14a shows the prediction error for the four
SFCs with different lengths. We can still see reasonably
accurate results, which range from 2.2 to 6.3 percent, 3.3 to
7.1 percent, 2.9 to 3.7 percent, and 2.9 to 4.2 percent for these
SFCs, respectively.

Effect of the Varied Number of Co-Locating SFCs. We also
evaluate whether the number of co-locating SFCs has the
potential to incur higher prediction error. We use an SFC
with three NFs (Router, Firewall, NIDS), and increase the
number of co-locating SFCs from 1 to 4. We randomly gen-
erate up to 20 types of placement for each testing scenario.
Fig. 14b shows that the prediction error varies from 2.4 to
3.6 percent, which is also a reasonably accurate result.

Prediction Accuracy With Multiple NICs on Different Nodes.
We evaluate whether the prediction accuracy falls with
multiple NICs for separate NFs and SFCs. In this evaluation,
we move one NIC to Node-1 and allocate two CPU cores on
Node-1 for networking I/O and packet forwarding. For
simplify and intuitive comparison, we use the same work-
loads and factors in Fig. 13 except that these NFs and SFCs
randomly receive traffic from different NICs. Fig. 15a
shows the prediction error of the four separate NFs when
co-locating with different number of competitors. From this
figure, we can see basically similar prediction error with
Fig. 13a, with an average of 4.4, 2.3, 1.9 and 0.9 percent devi-
ation from the measured performance drop for Router, Fire-
wall, NIDS and VPN. Fig. 15b shows the prediction error of
the four customised SFCs with randomly 10 types of place-
ment. From this figure, we can also see basically similar pre-
diction error with Fig. 13b and the worst-case of average
prediction error (SFC-3) is less than 5.1 percent. Therefore,
above evaluations could demonstrate that our extending to
multiple NICs is accurate and reliable.

Prediction Accuracy Without Tuning for SFC and Multiple
NICs. To show the improvement of prediction accuracy
with tuning for SFC and multiple NICs, we reevaluate the
experiments in Figs. 13b and 15a but only with primary pre-
diction model. Compared with the SFC tuning in Fig. 13b,
the primary prediction model can achieve an average of 5.9,
14.8, 15.6 and 20.8 percent deviation from the measured

performance drop for SFC-1, SFC-2, SFC-3 and SFC-4. Com-
pared with the multiple NICs tuning in Fig. 15a, the average
deviation of primary predication model can be 14.8, 22.6,
21.4 and 6.3 percent for Router, Firewall, NIDS and VPN.
Both prediction results are much worse than our final pre-
diction model and therefore prove the importance of fine
tuning for SFC and multiple NICs.

6.3 Improvement of Aggregate Performance

To demonstrate that Octans can improve the aggregate
performance by finding optimal or near-optimal SFCs place-
ment with our online algorithms (Heuristic and Greedy), we
compare them with two alternative placement mechanisms
that could be used in current systems: (1) node-balancing
placement: it places NFs by evenly dividing them to all nodes
for balancing the core utilization on each node; and (2) node-
first placement: it tries to place NFs on the local node first
until no core is available, then it places NFs on other nodes.
We use 6 customised sets of SFCs and each with different
SFC requests (Fig. 16a).

Fig. 16b shows the normalized performance with place-
ment algorithms in Octans and the two alternative mecha-
nisms. We can see that in all SFC sets, the heuristic
placement algorithm achieves highest aggregate perfor-
mance and compared with Node-balancing placement, it

Fig. 14. Prediction accuracy for different length and number of SFCs. Fig. 15. Prediction accuracy for separate NFs and SFCs with multiple
NICs.

Fig. 16. Improvement of aggregate performance.

2212 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on August 06,2021 at 18:14:56 UTC from IEEE Xplore. Restrictions apply.

can achieve higher aggregate performance by an average of
45.2 percent and ranging from 28.9 to 59.1 percent. Also,
compared with node-first placement, it can achieve higher
aggregate performance by an average of 27.1 percent and
ranging from 10.8 to 46.1 percent. Besides, to support incre-
mental deployment, the aggregate performance of greedy
placement algorithm could be lower than the heuristic algo-
rithm by an average of 5.4 percent, however it can still be
higher than the two alternative mechanisms by an average
of 38.1 and 20.9 percent

6.4 Efficiency of Online Placement Algorithms

Time Cost of Solution Search. Since the greedy algorithm in
Octans receives placement requests one by one and the
NFs of each request is usually less than seven [43], it could
find the optimal solution for a request in a short time. There-
fore, we only compare the heuristic algorithm in Octans to
the naive brute-force search algorithm to evaluate its time
cost. We use an SFC with 3 NFs and varied number (1�6) of
SFCs as the input for each algorithm. In each set of SFCs, we
randomly replace NFs and repeat it up to 100 times. A
many-core system usually has 2 or 4 nodes [45]. Therefore,
we also evaluate the effect of the number of nodes (setting
10 cores in each node) on calculation time. We only allocate
one CPU core (2.2 GHz) to run the algorithm.

Fig. 17a shows that in a 2-node server, even in the worst-
case (18 NFs in 6 SFCs), our heuristic algorithm can find a
solution with an average time of 0.017s, which takes 1853x
less time than the brute-force search algorithm (31.5s). Also, in
a 4-node server as shown in Fig. 17b, our heuristic algorithm
can find a solution with an average time of 5.3s in the worst-
case, but the brute-force search needs to spend more than
1858s (we use the case with 4 SFCs as this value due to the
long calculation time of 5 and 6 SFCs).

The Chance to Find Optimal Solutions. Our online algo-
rithms are based on heuristic and greedy, hence they cannot
guarantee an optimal solution. We evaluate the chance that
our algorithms can find the optimal solution, and if a near-
optimal solution could be found, what the deviation it is.
The optimal solution is found by brute-force search algo-
rithm (but taking long time), and we run the three algo-
rithms with a simulated 2-node server. The SFCs and NFs
generation are similar to the previous evaluation, and we
also repeat each set up to 100 times. Fig. 18a shows the prob-
ability Octans could have to find an optimal solution
across different numbers of SFCs. For one-time deployment,
the heuristic algorithm has a 50�77 percent chance to find
an optimal solution. For incremental deployment, the
chance to find an optimal solution decreases to 15 percent.
However, as shown in Fig. 18b, even with a near-optimal

solution, it has little deviation from the optimal one. With
the number of SFCs grows, the deviation of heuristic algo-
rithm increases from 1.08 to 3.08 percent while the deviation
of greedy algorithm increases reasonably up to 5.53 percent.

7 CONCLUSION

We have presented Octans, an NFV orchestrator that
searches optimal or near-optimal placement for SFCs in a
many-core NFV system. Starting with an NLIP model,
Octans first constructs an accurate model to predict an
unknown parameter with automatically identified metric of
NFs. Then, it provides two online placement algorithms to
quickly find a solution for placement requests. Our evalua-
tion built upon OpenNetVM shows that Octans provides
accurate prediction results, significantly improves the
aggregate performance of SFCs, and has a high chance to
find optimal solutions in a short time.

ACKNOWLEDGMENTS

The authors would like to thank anonymous TPDS reviewers
for their valuable suggestions. This work was supported in
part by National Key R&D Program of China under Grant
2020YFE0200500 (Joint Research on IPv6 Network Gover-
nance: Research, Development and Demonstration).

REFERENCES

[1] S. Palkar et al., “E2: A framework for NFV applications,” in Proc.
25th Symp. Operating Syst. Princ., 2015, pp. 121–136.

[2] C. Sun et al., “NFP: Enabling network function parallelism in
NFV,” in Proc. Conf. ACM Special Interest Group Data Commun.,
2017, pp. 43–56.

[3] W. Zhang et al., “OpenNetVM: A platform for high performance
network service chains,” in Proc. Workshop Hot Topics Middleboxes
Netw. Function Virtualization, 2016, pp. 26–31.

[4] X. Fei et al., “Paving theway forNFVacceleration: A taxonomy, survey
and future directions,”ACMComput. Surv., vol. 53, 2020,Art. no. 73.

[5] OpenStack, “Openstack,” 2018. [Online]. Available: https://
www.openstack.org/

[6] S. Blagodurov, A. Fedorova, S. Zhuravlev, and A. Kamali, “A case
for NUMA-aware contention management on multicore systems,”
in Proc. 19th Int. Conf. Parallel Archit. Compilation Techn., 2010,
pp. 557–558.

[7] M. Dobrescu et al., “Toward predictable performance in software
packet-processing platforms,” in Proc. 9th USENIX Symp. Netw.
Syst. Des. Implementation, 2012, Art. no. 11.

[8] A. Tootoonchian et al., “ResQ: Enabling SLOs in network function
virtualization,” in Proc. 15th USENIX Symp. Netw. Syst. Des. Imple-
mentation, 2018, pp. 283–297.

[9] C. Zeng, F. Liu, S. Chen,W. Jiang, andM. Li, “Demystifying the per-
formance interference of co-located virtual network functions,” in
Proc. IEEEConf. Comput. Commun., 2018, pp. 765–773.

[10] H. Moens and F. D. Turck, “VNF-P: A model for efficient place-
ment of virtualized network functions,” in Proc. 10th Int. Conf.
Netw. Service Manage. Workshop, 2014, pp. 418–423.

Fig. 17. The time cost of our heuristic algorithm.
Fig. 18. Optimality gap of the online algorithms.

YU ETAL.: OCTANS: OPTIMAL PLACEMENTOF SERVICE FUNCTION CHAINS IN MANY-CORE SYSTEMS 2213

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on August 06,2021 at 18:14:56 UTC from IEEE Xplore. Restrictions apply.

https://www.openstack.org/
https://www.openstack.org/

[11] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in Proc. IEEE Conf. Com-
put. Commun., 2015, pp. 1346–1354.

[12] T.-W. Kuo, B.-H. Liou, K. C.-J. Lin, and M.-J. Tsai, “Deploying
chains of virtual network functions: On the relation between link
and server usage,” IEEE/ACM Trans. Netw., vol. 26, no. 4,
pp. 1562–1576, Aug. 2018.

[13] S. Zhuravlev et al., “Addressing shared resource contention in
multicore processors via scheduling,” ACM SIGARCH Comput.
Archit. News, vol. 38, pp. 129–142, 2010.

[14] B. Lepers et al., “Thread and memory placement on NUMA sys-
tems: Asymmetry matters,” in Proc. USENIX Annu. Tech. Conf.,
2015, pp. 277–289.

[15] J. Rao, K. Wang, X. Zhou, and C.-Z. Xu, “Optimizing virtual
machine scheduling in NUMA multicore systems,” in Proc. IEEE
19th Int. Symp. High Perform. Comput. Archit., 2013, pp. 306–317.

[16] M. Liu and T. Li, “Optimizing virtual machine consolidation per-
formance on NUMA server architecture for cloud workloads,” in
Proc. 41st Int. Symp. Comput. Archit., 2014, pp. 325–336.

[17] A. Gember-Jacobson et al., “OpenNF: Enabling innovation in net-
work function control,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 44, pp. 163–174, 2014.

[18] Y. Xiao et al., “NFVdeep: Adaptive online service function chain
deployment with deep reinforcement learning,” in Proc. Int. Symp.
Qual. Service, 2019, pp. 1–10.

[19] X. Fei, F. Liu, H. Xu, and H. Jin, “Adaptive VNF scaling and flow
routing with proactive demand prediction,” in Proc. IEEE Conf.
Comput. Commun., 2018, pp. 486–494.

[20] Q. Zhang, Y. Xiao, F. Liu, J. C. S. Lui, J. Guo, and T. Wang, “Joint
optimization of chain placement and request scheduling for net-
work function virtualization,” in Proc. IEEE 37th Int. Conf. Distrib.
Comput. Syst., 2017, pp. 731–741.

[21] Q. Zhang, F. Liu, and C. Zeng, “Adaptive interference-aware VNF
placement for service-customized 5G network slices,” in Proc.
IEEE Conf. Comput. Commun., 2019, pp. 2449–2457.

[22] P. Jin, X. Fei, Q. Zhang, F. Liu, and B. Li, “Latency-aware VNF
chain deployment with efficient resource reuse at network edge,”
in Proc. IEEE Conf. Comput. Commun., 2020, pp. 267–276.

[23] Y. Li, L. T. Xuan Phan, and B. T. Loo, “Network functions virtuali-
zation with soft real-time guarantees,” in Proc. 35th Annu. IEEE
Int. Conf. Comput. Commun., 2016, pp. 1–9.

[24] J. Funston et al., “Placement of virtual containers on NUMA sys-
tems: A practical and comprehensive model,” in Proc. USENIX
Annu. Tech. Conf., 2018, p. 281–293.

[25] S. Kashyap et al., “Scalable NUMA-aware blocking synchronization
primitives,” in Proc. USENIX Annu. Tech. Conf., 2017, pp. 603–615.

[26] T. Wang, H. Xu, and F. Liu, “Multi-resource load balancing for
virtual network functions,” in Proc. IEEE 37th Int. Conf. Distrib.
Comput. Syst., 2017, pp. 1322–1332.

[27] X. Fei, F. Liu, H. Jin, and B. Li, “FlexNFV: Flexible network service
chaining with dynamic scaling,” IEEE Netw., vol. 34, no. 4, pp.
203–209, Jul./Aug. 2020.

[28] S. Rajagopalan et al., “Split/merge: System support for elastic exe-
cution in virtual middleboxes,” in Proc. 10th USENIX Symp. Netw.
Syst. Des. Implementation, 2013, pp. 227–240.

[29] J.-P. Lozi et al., “The Linux scheduler: A decade of wasted cores,”
in Proc. 11th Eur. Conf. Comput. Syst., 2016, Art. no. 1.

[30] Y. Jiang, X. Shen, C. Jie, and R. Tripathi, “Analysis and approxi-
mation of optimal co-scheduling on chip multiprocessors,” in
Proc. Int. Conf. Parallel Archit. Compilation Techn., 2008, pp. 220–229.

[31] Y. Wang, “NUMA-aware design and mapping for pipeline
network functions,” in Proc. 4th Int. Conf. Syst. Informat., 2017,
pp. 1049–1054.

[32] C. Sieber et al., “Towards optimal adaptation of NFV packet proc-
essing to modern CPU memory architectures,” in Proc. 2nd Work-
shop Cloud-Assisted Netw., 2017, pp. 7–12.

[33] Y. Hu and T. Li, “Towards efficient server architecture for virtual-
ized network function deployment: Implications and implemen-
tations,” in Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchit.,
2016, pp. 1–12.

[34] M. Li, Q. Zhang, and F. Liu, “Finedge: A dynamic cost-efficient
edge resource management platform for nfv network,” in Proc.
IEEE/ACM 28th Int. Symp. Qual. Service, 2020, pp. 1–10.

[35] Y. Zhang, W. Wu, S. Banerjee, J.-M. Kang, and M. A. Sanchez,
“SLA-verifier: Stateful and quantitative verification for service
chaining,” in Proc. IEEE Conf. Comput. Commun., 2017, pp. 1–9.

[36] OProfile, “Oprofile,” 2018. [Online]. Available: http://oprofile.
sourceforge.net/news/

[37] Intel, “Intel performance counter monitor,” 2017. [Online]. Avail-
able: https://software.intel.com/en-us/articles/intel-performance-
counter-monitor/

[38] R. Nathuji et al., “Q-clouds: Managing performance interference
effects for QoS-aware clouds,” in Proc. 5th Eur. Conf. Comput. Syst.,
2010, pp. 237–250.

[39] J. Benesty et al., “Pearson correlation coefficient,” in Noise Reduc-
tion in Speech Processing. Berlin, Germany: Springer, 2009.

[40] W. Ma, O. Sandoval, J. Beltran, D. Pan, and N. Pissinou, “Traffic
aware placement of interdependent NFV middleboxes,” in Proc.
IEEE Conf. Comput. Commun., 2017, pp. 1–9.

[41] J. Collins et al., “Pointer cache assisted prefetching,” in Proc. 35th
Annu. ACM/IEEE Int. Symp. Microarchit., 2002, pp. 62–73.

[42] Intel, “Data direct I/O (DDIO),” 2014. [Online]. Available:
https://www.intel.com/conten/www/us/en/io/data-direct-i-
o-technology.html

[43] S. Kumar et al., “Service function chaining use cases in data cen-
ters,” IETF SFC WG, 2015.

[44] I. D. Community, “DPDK pktgen,” 2018. [Online]. Available:
http://pktgen-dpdk.readthedocs.io/en/latest/

[45] Dell, “Dell poweredge servers portfolio guide,” 2018. [Online].
Available: http://www.dell.com/downloads/global/products/
pedge/en/pedge-portfolio-brochure.pdf

Heng Yu received the BS degree from the School
of Communication and Information Engineering,
University of Electronic Science and Technology,
Chengdu, China, in 2017. He is currently working
toward the PhD degree at the Institute of Network
Science and Cyberspace, Tsinghua University,
Beijing, China. His research interests include
cloud computing, serverless computing, and net-
work function virtualization.

Zhilong Zheng received the BS degree from the
Department of Software Engineering, Chongqing
University, Chongqing, China, in 2015, and the
PhD degree from the Department of Computer
Science, Tsinghua University, Beijing, China, in
2020. He is currently with Alibaba Inc. His
research interests include wireless transport opti-
mization and high-performance networking stack.

Junxian Shen received the BS degree from the
Department of Computer Science and Technol-
ogy, Tsinghua University, Beijing, China, in 2019.
He is currently working toward the master’s
degree at the Institute for Network Sciences and
Cyberspace, Tsinghua University, Beijing, China.
His research interests include network function
virtualization, cloud computing, and serverless
computing.

CongcongMiao received the BS degree from the
Beijing University of Posts and Telecommunica-
tions, Beijing, China, in 2015, and the PhD degree
from the Department of Computer Science and
Technology, Tsinghua University, Beijing, China,
China, in 2020. He is currently a senior engineer
with Tencent. His research interests include net-
work measurement and management, machine
learning in networking, and cloud computing.

2214 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on August 06,2021 at 18:14:56 UTC from IEEE Xplore. Restrictions apply.

http://oprofile.sourceforge.net/news/
http://oprofile.sourceforge.net/news/
https://software.intel.com/en-us/articles/intel-performance-counter-monitor/
https://software.intel.com/en-us/articles/intel-performance-counter-monitor/
https://www.intel.com/conten/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/conten/www/us/en/io/data-direct-i-o-technology.html
http://pktgen-dpdk.readthedocs.io/en/latest/
http://www.dell.com/downloads/global/products/pedge/en/pedge-portfolio-brochure.pdf
http://www.dell.com/downloads/global/products/pedge/en/pedge-portfolio-brochure.pdf

Chen Sun received the BS degree from the
Department of Electronic Engineering, Tsinghua
University, Beijing, China, in 2014, and the PhD
degree from theDepartment of Computer Science
and Technology, Tsinghua University, Beijing,
China, in 2019. He is currently a network engineer
with Alibaba Group. He has published papers in
SIGCOMM, INFOCOM, MM, the IEEE Journal on
Selected Areas in Communications, the IEEE/
ACM Transactions on Networking, and so on. His
research interests include multimedia transmis-
sion, network telemetry, and network function
virtualization.

Hongxin Hu (Member, IEEE) received the PhD
degree in computer science from Arizona State
University, Tempe, Arizona, in 2012. He is an
associate professor with the Department of
Computer Science and Engineering, University at
Buffalo, the State University of New York. His cur-
rent research interests include security in emerg-
ing networking technologies, security in Internet
of Things (IoT), machine learning for security and
privacy, and security and privacy in social net-
works. He has published more than 100 refereed

technical papers, many of which appeared in top conferences and jour-
nals. He received the NSF CAREER Award, in 2019. He is the recipient
of the best paper awards from ACSAC 2020, IEEE ICC 2020, ACM
SIGCSE 2018, ACM CODASPY 2014, the Best Paper Award Honorable
Mentions from ACM SACMAT 2016, IEEE ICNP 2015, and ACM SAC-
MAT 2011.

Jun Bi (Senior Member, IEEE) received the BS,
CS, and PhD degrees from the Department of
Computer Science, Tsinghua University, Beijing,
China. He was a Changjiang Scholar distin-
guished professor with Tsinghua University and
the director of Network Architecture Research
Division, Institute for Network Sciences and
Cyberspace, Tsinghua University. His previous
research interests included Internet architecture,
SDN/NFV, and network security. He successfully
led tens of research projects, published more

than 200 research papers and 20 Internet RFCs or drafts, owned 30
innovation patents, received national science and technology advance-
ment prizes, IEEE ICCCN Outstanding Leadership Award, and best
paper awards. He was a distinguished member of the China Computer
Federation (CCF).

Jianping Wu (Fellow, IEEE) received the BS,
MS, and PhD degrees from Tsinghua University,
Beijing, China. He is currently a full professor and
the director of the Network Research Center and
a PhD supervisor with the Department of Com-
puter Science and Technology, Tsinghua Univer-
sity. Since 1994, he has been an in-charge of the
China Education and Research Network. His
research interests include the next-generation
Internet, IPv6 deployment and technologies, and
Internet protocol design and engineering.

Jilong Wang (Member, IEEE) received the PhD
degree in computer science from Tsinghua Uni-
versity, Beijing, China, in 1996. He is currently a
professor with the Institute for Network Sciences
and Cyberspace, Tsinghua University. His rese-
arch interests include network architecture, net-
work measurement, cyberspace mapping, and
cyberspace governance.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

YU ETAL.: OCTANS: OPTIMAL PLACEMENTOF SERVICE FUNCTION CHAINS IN MANY-CORE SYSTEMS 2215

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on August 06,2021 at 18:14:56 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

