
P4Tester: Efficient Runtime Rule Fault Detection for
Programmable Data Planes

Yu Zhou, Jun Bi, Yunsenxiao Lin, Yangyang Wang, Dai Zhang, Zhaowei Xi, Jiamin Cao, Chen Sun

Institute for Network Sciences and Cyberspace, Tsinghua University

Department of Computer Science, Tsinghua University

Beijing National Research Center for Information Science and Technology (BNRist)

ABSTRACT
P4 and programmable data planes bring significant flexibility to

network operation but are inevitably prone to various faults. Some

faults, like P4 program bugs, can be verified statically, while some

faults, like runtime rule faults, only happen to running network

devices, and they are hardly possible to handle before deployment.

Existing network testing systems can troubleshoot runtime rule

faults via injecting probes, but are insufficient for programmable

data planes due to large overheads or limited fault coverage. In

this paper, we propose P4Tester , a new network testing system for

troubleshooting runtime rule faults on programmable data planes.

First, P4Tester proposes a new intermediate representation based on

Binary Decision Diagram, which enables efficient probe generation

for various P4-defined data plane functions. Second, P4Tester offers
a new probe model that uses source routing to forward probes.

This probe model largely reduces rule fault detection overheads,

i.e. requiring only one server to generate probes for large networks

and minimizing the number of probes. Moreover, this probe model

can test all table rules in a network, achieving full fault coverage.

Evaluation based on real-world data sets indicates that P4Tester can
efficiently check all rules in programmable data planes, generate

59% fewer probes than ATPG and Pronto, be faster than ATPG

by two orders of magnitude, and troubleshoot multiple rule faults

within one second on BMv2 and Tofino.

CCS CONCEPTS
• Networks → Network measurement; Error detection and er-
ror correction.

KEYWORDS
Runtime rule fault detection, programmable data plane, test packet

generation

ACM Reference Format:
Yu Zhou, Jun Bi, Yunsenxiao Lin, Yangyang Wang, Dai Zhang, Zhaowei Xi,

Jiamin Cao, Chen Sun. 2019. P4Tester: Efficient Runtime Rule Fault Detection

for Programmable Data Planes. In IEEE/ACM International Symposium on
Quality of Service (IWQoS ’19), June 24–25, 2019, Phoenix, AZ, USA. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3326285.3329040

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6778-3/19/06. . . $15.00

https://doi.org/10.1145/3326285.3329040

1 INTRODUCTION
Programmable data planes [1, 2] help network operators meet ever-

increasing network operation demands. Network operators can

agilely develop various functions on programmable data planes

with P4 [3], such as advanced network monitoring [4], congestion-

aware forwarding [5], high-performance load balancing [6], and

distributed system accelerating [7–10]. Despite the programmabil-

ity and flexibility, programmable data planes are inevitably prone

to faults which could significantly compromise network QoS and

incur revenue penalty.

Faults on programmable data plane come in various shapes and

sizes. First, some faults exist in P4 programs and configurations

and are referred to as static P4 faults, which can be formally de-

bugged before deployment. Second, some faults can cause missed

or abnormal table rules in running programmable switches. As

these faults always appear at runtime, they can hardly be debugged

before deployment and are referred to as runtime rule faults. In
practice, these runtime rule faults are not uncommon for network

devices [11–15], and can come into being due to switch software

bugs [16], hardware bugs [17, 18], and abnormal operations [19].

These faults can cripple programmable data planes and degrade

network reliability. Therefore, troubleshooting runtime rule faults

for programmable networks is of great importance.

Troubleshooting runtime rule faults on programmable data planes

is non-trivial and requires both low overheads and high fault cover-
age. Unfortunately, off-the-shelf solutions are far from satisfactory.

Static P4 verification [20–23] can handle P4 program bugs before de-

ployment but is not good at debugging runtime rule faults. Passive
network monitoring [24–26] detects faults through tracing normal

traffic but is insufficient to detect all rule faults as some faults might

not be triggered by existing packets. Proactive network testing diag-

noses faults via injecting probes. Comparing with P4 verification

and network monitoring, network testing can proactively detect

rule faults with amoderate number of probes. However, existing net-

work testing systems either need a considerable number of servers

for probe generation [14, 15], leading to unacceptable overheads,

or cannot completely check all switches and table rules [11–13],

leading to limited fault coverage.

In this paper, we argue for proactively testing programmable

data planes for runtime rule fault detection. Given the limitations of

existing solutions, we should design a new testing system dedicated

to programmable networks, which has three challenging objectives.

Variability of P4 programs. Testing traditional networks only

requires rigid probe generation schemes for fixed protocols and data

plane functions, e.g. layer-3 routing. However, P4 enables network
operators to develop various protocols and data plane functions, and

different P4 programs process packets differently. Correspondingly,

https://doi.org/10.1145/3326285.3329040
https://doi.org/10.1145/3326285.3329040

IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Y. Zhou, J. Bi, Y. Lin, Y. Wang, D. Zhang, Z. Xi, J. Cao, C. Sun

to check runtime rule faults, different P4 programs need different

patterns of probes. Thus, testing programmable data planes requires

a flexible mechanism to generate probes for diverse P4 programs.

Low testing overheads. Proactive network testing mainly intro-

duces two types of overheads, i.e. additional network bandwidth

for forwarding probes and computation resources in control planes

or endpoint servers for generating probes. First, the network test-

ing system should generate as few probes as possible. Otherwise,

too many probes might occupy too much bandwidth and impede

normal traffic. Second, for the avoidance of substantial capital in-

vestment and management complexity, testing programmable data

planes should introduce light workload to control planes or only

occupy a small number of servers for probe generation.

High fault coverage. Making data planes free of runtime rule

faults requires completely checking table rules in all switches at real

time. Otherwise, some rule faults might be missed, and the effective-

ness of the network testing system is compromised. However, some

table rules are unreachable to the network testing system through

traditional probe forwarding schemes, e.g. IP routing, which makes

it challenging to guarantee high fault coverage.

To address the above challenges, we propose P4Tester as an

efficient network testing system for programmable data planes.

P4Tester is based on two key designs that make innovations on

probe generation and forwarding. First, to flexibly generate probes
for various P4 programs, we propose a intermediate representa-

tion of P4 programs and table rules based on Binary Decision Dia-

gram (BDD) [27]. Taking BDD as the basic data structure, P4Tester
performs automated analysis on P4 programs and table rules to

generically generate probes for various data plane functions. Fur-

thermore, P4Tester comes up with an efficient algorithm that can

largely simplify P4 program analysis.

Second, to achieve high rule coverage with low overheads, P4Tester
proposes a new probe model. This model forwards probes via source
routing [28] and acquires testing results on each switch via piggy-
backing rule actions in probes. In P4Tester , probes have standard
packet headers that can exercise table rules. After the normal packet

headers, there is a source routing label stack to forward probes in-

dependently. With the label stack, P4Tester probes can check rules

in all switches, yielding high fault coverage. On top of that, one

P4Tester probe can check many rules, which largely reduces band-

width overheads. P4Tester cautiously plans probe forwarding paths

so that network operators only need one server for probe generation

and can flexibly deploy the server anywhere in networks.

Our contributions are as follows.

• P4Tester is the first low-overhead and high-coverage net-

work testing system to troubleshoot runtime rule faults on

programmable data planes (§3).

• We provide a series of algorithms to optimize probe genera-

tion and update in P4Tester (§4).
• We build a prototype of P4Tester , deploy it on BMv2 and

Tofino [29], and evaluate it with two real-world data sets.

Evaluation result show that P4Tester can efficiently check

all rules on programmable data planes, generate 59% fewer

probes than ATPG and Pronto, be faster than ATPG by two

orders of magnitude, and troubleshoot multiple rule faults

within one second (§5).

2 BACKGROUND AND RELATEDWORK
This section demonstrates the background of P4 and runtime rule

faults and compares P4Tester with related work.

2.1 Preliminary to P4
P4 offers much flexibility to implement rich packet processing func-

tions. We can construct compound actions with a variety of primi-

tive actions (e.g. modify_filed). For a single table, P4 enables incor-
porating multiple match fields with various match types (e.g. exact,
ternary, and range) and several compound actions. Furthermore,

we can organize multiple tables as a consolidated directed acyclic

graph with control flow logic, including if-else expressions and

action-based case selections
1
. P4 also supports customization of

packet formats and parsers. P4 programs have a two-phase life-

cycle. At compilation time, P4 compilers (e.g. p4c [30]) transform
P4 programs to executable code and deploy the executable code

into P4 targets (e.g. Tofino [29]). At runtime, P4 pipelines and table

entries populated by the control plane jointly determine the packet

processing logic of switches.

2.2 Preliminary to Runtime Rule Faults
Before introducing runtime rule faults, we first present a definition

of table rules.

Definition 1. Table rule r is a three-tuple ⟨m, a, p⟩, in which the
components respectively represents r ’s match fields, r ’s action, and
r ’s priority.

Runtime rule faults. There are mainly two types of runtime rule

faults, rule missing fault and rule priority fault. First, if a rule r expe-
riences the rule missing fault, all packets whose headers can match

r .m do not execute any action at all. Second, for a pair of overlapped

rules r1 and r2 (there exist packets that can simultaneously match

r1.m and r2.m, and r1.p > r2.p), the priority fault happens when

packets hitting r1.m and r2.m execute r2.a instead of r1.a.
There are two main causes for the two runtime rule faults above.

(1) Switch software may conduct incorrect or illegal rule operations

which result in rule missing or rule priority swapping [16, 31].

An example is PicOS 2.1.3 that caches rules in switch software

when hardware tables are full [16]. For a pair of overlapped rules

r1 and r2, if the high-priority rule r1 is cached in software and

the low-priority rule r2 is in hardware, packets matching r1.m and

r2.m incorrectly exercise r2.a. (2) Some hardware switching ASIC

may be implemented incompletely or with errors. For example, HP

5406zl switching ASIC does not support rule priorities [17], and

packets always exercise the later-installed rule in ignorance of rule

priorities.

Runtime rule fault detection. Runtime rule faults lead to incon-
sistency between data planes and control planes. For example, the

controller sends ten rule add messages to a switch, but the ASIC

in the switch only has nine table rules, then the controller-switch

inconsistency comes into being, and the switch encounters a rule

missing fault. The main problem of rule fault detection is how to

attain a full and accurate view of table rules in running network

1
We mainly consider if-else expressions in this paper, because if-else expressions can

equivalently express action-based case selections.

P4Tester: Efficient Runtime Rule Fault Detection for Programmable Data Planes IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA

devices. Thus, the intuition of detecting runtime rule faults is to

validate whether table rules on data planes strictly correspond to

the table rule operations (i.e. adding or removing rules) issued by

control planes. To address this problem, a general approach is to

check real packet behaviors. If packets are forwarded in compli-

ance with table rules issued by control planes, the realistic rules

in network devices do not experience faults. Otherwise, rule faults

may have happened.

2.3 Related Work
Static P4 verification. With the increasing maturity and popular-

ity of P4, ensuring the reliability of programmable data planes has

attracted much attention, especially in verification. Existing solu-

tions such as ASSERT-P4 [22] and P4v [20] transform P4 programs

to verification-friendly models (such as C language) and employ

well-studied approaches (e.g. symbolic execution [32]) to find P4

program bugs. In particular, P4pktgen [23] generates test cases

for P4 programs. P4Tester differs from P4pktgen in the following

aspects. First, P4pktgen is designed to debug P4 programs and P4

toolchains statically, while P4Tester is devoted to checking runtime

rule faults in P4 switches in real time. Second, P4pktgen conducts

symbolic execution on P4 programs to generate test cases running

in a behavior simulator. P4Tester performs analysis on P4 programs

with BDD and proposes a new probe model to test table rules in

distributed switches completely.

Passive networkmonitoring. Tracing and analyzing normal traf-

fic, network monitoring can detect runtime rule faults via checking

real packet forwarding behaviors. First, sample-based network mon-

itoring systems, like sFlow [33], can only report faults experienced

by a small portion of packets, thus have limited fault coverage.

Second, NetSight [25] and EverFlow [24] provide packet-level infor-

mation, but incur large bandwidth and processing overheads when

checking all rules. Besides, all passive network monitoring systems

can only detect rule faults that have been triggered by existing

packets, and cannot check the correctness of all table rules.

Proactive network testing. Based on how to inject probes, we

categorize existing network testing systems into two types. The first

type is controller-based probe injection. Monocle [11], RuleChecker [12],

and RuleScope [13] run in control planes and employ switches to

inject probes via control messages. These systems could incur large

control overheads, i.e. a large number of probes and intensive con-

trol messages. They inevitably suffer scalability bottlenecks when

the network size and the rule number increase. Furthermore, they

cannot check rules that forward packets from switches to servers. In

brief, controller-based probe injection yields limited testing complete-
ness while incurring significant controller overheads. The second one
Table 1: Comparing P4Tester with existing network testing
systems.

Model P4 Full Fault Controller Server
Programs Coverage Overhead Overhead

Monocle No No High Low

RuleScope No No High Low

RuleChecker No No High Low

ATPG No No Low High

Pronto No No Low High

P4Tester Yes Yes Low Low

1

2

3

False True

1

2

3

True False

if (� ≥ 3) match (� = 4)

0

1
0

1

Figure 1: BDD for a three-bit field X , and each circle denotes
a bit of X . The left part uses BDD to encode i f (X ≤ 3), and
the right part uses BDD to encode a table rule.

is server-based probe injection. ATPG [14] and Pronto [15] employ

servers to inject probes. To check all rules, ATPG and Pronto re-

quire that all servers should support injecting and collecting probes.

When some servers are unavailable, they can only check a small por-

tion of rules, which makes it impossible to troubleshoot rule faults

completely. In brief, server-based probe injection has to strike a bal-
ance between fault coverage and server overheads. Furthermore, the

above systems are designed to model specific data plane functions.

Only when the above systems change their inner probe generation

algorithms case by case can they generate probes for various data

plane functions. In summary, the off-the-shelf network testing sys-

tems either introduce large overheads or limit in fault coverage,

which inevitably compromises their practicality. Table 1 presents a

brief comparison between P4Tester and the above network testing

systems.

3 DESIGN OF P4TESTER
This section introduces key ideas and architectural overview of

P4Tester .

3.1 Key Ideas of P4Tester
Testing programmable data planes requires automatically generat-
ing probes for arbitrary P4 programs, high fault coverage, low band-
width overheads, and low server overheads. To satisfy these require-

ments, we propose two key ideas. The first one can overcome the

complexity challenge from modeling various P4 programs, and the

second one ensures completely checking rule faults with low band-

width overheads and server overheads. Next, we will respectively

illuminate the two ideas.

BDDas an intermediate representation. A P4 program can have

many tables (up to 129 in Switch.p4 [34]) and if-else expressions to

construct complex control flow. Furthermore, different networks

possibly have various data plane functions defined by different

P4 programs. Thus, we need a general method to generate probes

for various P4 programs. An intuitive solution is to use symbolic

execution to search all cases for P4 programs and table rules and

to create probes for each case. However, this solution suffers state

space explosion with the size of P4 programs increasing, incur-

ring scalability issues as well as compromised probe generation

efficiency [23].

To provide a generic probe-generation approach for different P4

programs, P4Tester employs Binary Decision Diagram (BDD) [27]

as a new intermediate representation of P4 programs and table

rules. As shown in Figure 1, BDD can uniformly represent if-else

expressions and table rules. Moreover, BDD supports rich logic

operations, such as conjunction (∨), injection (∧), and complement

IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Y. Zhou, J. Bi, Y. Lin, Y. Wang, D. Zhang, Z. Xi, J. Cao, C. Sun

(¬). Based on the BDD representation, we can directly conduct

high-performance program analysis on P4, which enables generat-

ing probes for various P4 programs and effectively improves the

efficiency.

Source routing for probe forwarding. Existing network testing

systems rely on layer-3 routing or layer-2 switching to forward

probes, which has two drawbacks. First, it constrains the propor-

tion of the rules that can be checked. Some table rules are not

reachable to the network testing systems via the above forward-

ing schemes. Thus, fault coverage is fundamentally constrained.

Second, it requires heavy computation on probe generation. To

check all rules, network testing systems need to compute all-pair

reachability (NP-Hard [15]), incurring long probe generation and

update time.

To address the above drawbacks, we seek a flexible forwarding

scheme, source routing [28], to forward probes in networks. We

add a label stack after standard probe headers to control probe

forwarding paths. Moreover, probe headers are only used to ex-

ercise table rules, while switches forward probes based on labels.

Benefits of using source routing to forward probes are three-fold.

(1) We could plan probe forwarding paths to let one probe header

exercise many table rules cross different switches. Thus, P4Tester
injects much fewer probes than existing testing systems. (2) It en-

sures full fault coverage even if there is only one available server.

We can cautiously plan forwarding paths to make probes traverse

in a circle and use the same server to inject and capture probes

simultaneously. (3) It reduces computation complexity of probe

generation by partitioning the problem into two independent parts:

Computing probe headers according to table rules and computing

probe forwarding paths according to the network topology. We can

develop a series of efficient algorithms for rapid probe generation

and update.

Furthermore, existing network testing systems rely on probe

losses to infer rule faults. In particular, if probes successfully arrive

at servers, operators can infer that the corresponding rules do

not experience any fault. Otherwise, the rules might encounter

faults. Such rule fault inference has two drawbacks. First, it cannot

instantly distinguish port or link failures with rule faults and need

multiple rounds of injecting probes to identify causes of probe

losses, compromising rule fault detection efficiency. Second, the

ultimate goal of network testing is to locate rule faults efficiently.

ATPG and Pronto have to employ multiple lost probes to infer

which rule experiences faults, posing long testing delay. When

multiple rule faults exist, locating rule faults becomes even more

complicated.

Instead of inferring faults, we use probes to piggyback actions

(i.e. forwarding ports) of the rules under testing and to verify pig-

gybacked rule actions directly. Benefits of rule action piggybacking

are as follows. First, piggybacking rule actions distinguishes rule

faults from link failures explicitly. For source routing probes, link

failures lead to probe losses, and rule faults lead to wrong rule ac-

tions piggybacked in probes. Thus, we could easily detect rule faults

with sound accuracy. Second, piggybacking rule actions supplies

instant rule fault troubleshooting. P4Tester could check collected

probes and directly locate the switch encountering rule faults.

3.2 Architecture of P4Tester
As shown in Figure 2, P4Tester comprises two primary components,

i.e. P4Tester agents running in switches and P4Tester terminal running
in a server. Before introducing these components, we first describe

the workflow of P4Tester .
Workflow of P4Tester . Overall, using P4Tester to check table rules
comprises four steps shown in Figure 2. (1) P4 encoder represents
table rules and P4 programswith BDD. (2) Taking the BDD represen-

tations, topology, and rule update events as inputs, probe constructor
generates and updates probes with a series of efficient algorithms.

(3) P4Tester agents running in P4 switches forward probes and pig-

gyback rule actions. (4) As soon as probes come back to P4Tester
terminal, probe checker detects and locates rule faults.

P4Tester probe. A probe of P4Tester comprises two parts shown

in Figure 3. The first part is a standard probe header (including

Ethernet, IPv4, TCP, and so on) that can exercise table rules in

P4 programs. The second one is a label stack (i.e. L1, L2, ...) re-
siding behind the probe header. In the stack, source routing la-

bels correspond to each hop traversed by probes. For one label,

there are three fields. The first 2-bit field BOS (bottom of the

stack) identifies whether the label has been visited. If the label

has been visited, the corresponding BOS is 1. Otherwise, BOS is

0. BOS helps P4 parser find the label corresponding to the cur-

rent hop through finding the first label whose BOS is 0. Second,

P4Tester records standard_metadata.egress_spec in Port (15 bits).

At last, the 15-bit field Eдress specifies the forwarding port of the
probe at the current hop. Specifically, P4Tester agent rewrites stan-
dard_metadata.egress_spec with the value of Eдress after recording
the value of standard_metadata.egress_spec in Port . Overall, one
P4Tester label has 32 bits.
P4Tester agent. As shown in Figure 3, P4Tester agent is composed

of two tables that process probes sequentially. (1) Record Table (RT)
records egress ports specified by the original P4 programs in labels.

(2) Forward Table (FT) redirects probes according to Eдress . In total,

the two tables only need two rules which are applied to all probes

by default. Evaluation results in §5.3 indicate that P4Tester agent
consumes minor data plane resources.

P4Tester terminal. P4Tester terminal involves two aspects of func-

tions. First, P4Tester terminal should generate probe headers to

exercise table rules and generate Eдress in labels to plan probe for-

warding paths. Second, P4Tester terminal should check rule actions

piggybacked in probes to verify whether corresponding rules expe-

rience faults. As shown in Figure 2, P4Tester terminal is composed

of three elements.

(1) P4 encoder. P4 encoder relieves operators’ concerns for han-
dling various header space of different P4 programs. P4 encoder

is able to automatically convert P4 programs and table rules into

BDD based representations. The workflow of P4 encoder comprises

the following steps. First, P4 encoder extracts global header space

via merging match fields of all tables and fields referred by if-else

expressions. Then, P4 encoder represents each if-else expression

with BDD, and a BDD can represent one if-else expression. Next,

P4 encoder represents table rules in each table with BDD, and we

can get a BDD set for each table.

P4Tester: Efficient Runtime Rule Fault Detection for Programmable Data Planes IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA

P4Tester Terminal Running in a Server

P4 Encoder Probe Constructor

Probe Checker

Inputs of P4Tester
1. Table Rules
2. P4 Programs
3. Topology
4. Rule Update Events

Outputs of P4Tester
1. Rule Missing Faults
2. Rule Priority Faults

𝑆ଷ

P4 Pipeline Running in 𝐒𝟐
Original

P4 Program
P4Tester

Agent

NICR T

BDD

ProbesProbesProbe

𝑆ଵ
𝑆ସ

(1) (2)

(3)

(4)

𝑆ଶ

Figure 2: Architectural overview of P4Tester.

P4Tester Agent

P4Tester Probe

Probe Header

Lଵ

PortBOS

Forward TableRecord Table

Lଶ Lଷ …

Egress

Label Stack

Figure 3: P4Tester probe and P4Tester agent.

(2) Probe constructor. After getting BDD representations of P4

programs and table rules, probe constructor generates probe head-

ers and labels accordingly. Probe constructor provides two types

of outputs. First, it provides a map between headers and desired

actions, i.e.H 7→ {p′x | x ∈ [1,Ns]}.H denotes the probe header. We

assume that probes need to traverse Ns switches, whose id x is from

1 to Ns ; p
′
x denotes the desired output port after being processed

by switch s . Second, the constructor cautiously generates Eдress of
labels that direct probes to traverse in circles. For example, a probe

emitted by P4Tester terminal in Figure 2 can traverse the following

path: S1 → S2 → S3 → S4 → S1, and the probe will finally go

back to P4Tester terminal. Thus, P4Tester could use the same server

to inject and collect probes. Furthermore, the constructor can eas-

ily build the label stack that enables probes to exercise all table

rules. In this respect, P4Tester can completely check rule faults with

fewer probes and only one server. Moreover, the constructor injects

probes via the server NIC. Besides, the constructor also reacts to

rule update events and performs quick probe update.

(3) Probe checker. Probe checker takes captured probes as inputs.

Probe checker extracts rule actions as well as headers from probes,

and then it verifies the correctness of piggybacked actions switch

by switch. Probes can be viewed as a map between probe headers

and real rule actions, i.e. H 7→ {p′′x | x ∈ [1,Ns]} (p
′′
x denotes an

output port). Then, for a particular header H , the checker can be

formulated as checking the correctness of the following proposition:

∀x ∈ [1,Ns],p
′
x = p

′′
x . Probe checker could instantly find rule faults

at the time of receiving probes. Simultaneously, probe checker

locates which switches experience rule faults via finding the switch

id x that breaks the above proposition.

4 PROBE GENERATION AND UPDATE IN
P4TESTER

In this section, we describe the algorithms of generating and updat-

ing probes in P4Tester . Table 2 outlines the symbols used throughout

the paper.

Table 2: Symbols used throughout the paper.

Symbol Description

r A table rule

P A switch-level header set

P A network-wide header set

P A probe

R Root of a BDD tree

K Maximum label number in a packet

Ns , Nt , Nr ,
NP , NP , Nθ

Number of switches, tables per switch, rules per table, switch-

level header sets, network-wide header sets, probes

Algorithm 1: Generate Switch-level Probe Headers
Input: Control flow graph of a P4 program

Output: Switch-level probe headers
1 V ′ ← TopologicalSort(P4 control flow graph);

2 E is a Boolean expression vector whose length is |V ′ |;

3 for 1 ≤ n ≤ |V ′ | do
4 if V ′[n] is a table then
5 for 1 ≤ i ≤ Nr do
6 r ′n,i ← (rn,i .m ∧ E[n], rn,i .a, rn,i .p) ;

7 foreach child vc of V ′[n] do
8 E[vc] ← E[vc] ∨ E[n];

9 else if V ′[n] is an if-else expression then
10 For true child vt , E[vt] ← V ′[n].bdd ∧ E[n] ∨ E[vt] ;

11 For false child vf , E[vf] ← ¬V
′[n].bdd ∧ E[n] ∨ E[vf]

;

12 P ← {} ; /* P stores SHSs. */

13 for 1 ≤ n ≤ |V ′ | do
14 P

′
← {}; /* P

′
temporarily stores SHSs. */

15 for P ′ in P do
16 for 1 ≤ i ≤ Nr do
17 if r ′n,i .m ∧ P

′ , False then
18 P

′
← P

′
∪ {P ′ ∧ r ′n,i .m} ;

19 P ′ ← ¬r ′n,i .m ∧ P
′
;

20 P ← P
′
∪ P ;

4.1 Probe Generation
In this part, P4Tester answers two questions. The first one is how to
generate headers for checking all rules, and the second one is how
to generate labels to convey probes to switches under testing. Probe
constructor is composed of three independent steps. For the first

question, Step 1 generates probe headers to test table rules at the

switch level (i.e. one probe header for one rule in one switch), and

Step 2 generates probe headers to test rules in the network wide

(i.e. one probe header for multiple rules in different switches). For

the second question, Step 3 generates probe forwarding paths and

the corresponding label stack.

Solving problems of each step independently cannot guarantee

global optimization on the number of probes. P4Tester insists on
pursuing independent solutions of each step to improve efficiency,

i.e. quick probe generation and update. More importantly, even with

IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Y. Zhou, J. Bi, Y. Lin, Y. Wang, D. Zhang, Z. Xi, J. Cao, C. Sun

Table 3
Table 2

Table 1

𝑟ଵ,ଵ
ᇱ 𝑟ଵ,ଶ

ᇱ …

𝑟ଶ,ଵ
ᇱ 𝑟ଶ,ଶ

ᇱ …

𝑟ଷ,ଵ
ᇱ 𝑟ଷ,ଶ

ᇱ …

Table 1

Table 2

Table 3

P4 Program
if (valid (ip))
apply(Table 1);
if (ip.ttl > 0)
apply(Table 2);

apply(Table 3);

 𝑟ଵ,ଵ 𝑟ଵ,ଶ …Eሾ1ሿ

Eሾ2ሿ 𝑟ଶ,ଵ 𝑟ଶ,ଶ …

 𝑟ଷ,ଵ 𝑟ଷ,ଶ …Eሾ3ሿ

E 1 ← eth.eth_type = 0x0800
E 2 ← eth.eth_type = 0x0800∧

 ip.ttl > 0
E 3 ← eth.eth_type = 0x0800

𝑃ଵ 𝑃ଶ …𝑃ത

𝑃ଵ ← 𝑟ଵ,ଵ
ᇱ ∧𝑟ଶ,ଶ

ᇱ ∧𝑟ଷ,ଵ
ᇱ

𝑃ଶ ← 𝑟ଵ,ଵ
ᇱ ∧𝑟ଶ,ଵ

ᇱ ∧𝑟ଷ,ଶ
ᇱ

Serialized Control Flow Cascade Tables & SHSsControl Flow Graph

Figure 4: An example of SHS generation. ri, j denotes the j-th
rule in the i-th table. Pi denotes i-th SHS of a switch.

the partial optimization, P4Tester generates the minimal number of

probes among all the existing solutions when checking rule faults

in the same networks.

Step 1: Generating switch-level probe headers. In this step,

probe constructor needs to convert rules and P4 programs to probe

headers. For one switch, we name probe headers that exercise the

same rules as a switch-level header set (SHS). SHS generation re-

quires handling complex P4 control flow. First, P4Tester conducts
simplification on BDD representations of P4 programs and equiva-

lently transforms the complex control flow graph to simple cascade

tables. Then, we can generate SHSs based on cascade tables.

Simplifying P4 program control flow comprises two parts. (1)

Serializing control flow. P4Tester first transforms the control flow

graph to a serialized control flow graph. In the serialized graph,

each table is accompanied by a generated if-else expression, and this

expression globally determines whether a packet could be processed

by corresponding tables. (2) Merging if-else expressions and table
rules. P4Tester removes the if-else expressions and generates new

rules through the conjunction of if-else expressions and match of

original rules.

We provide Algorithm 1 to generate SHSs. Figure 4 presents

an example to generate SHSs for a simple P4 program. First, the

algorithm performs the topological sort on the control flow graph.

Then, the algorithm iterates over nodes in the control flow graph

and computes E. E identifies the global conditions, under which the

P4 program executes the nodes. At last, we can generate SHSs for

cascade tables (Line 12-19). Algorithm 1 generates SHSs for rule

missing faults, while we can extend the algorithm to detect rule pri-

ority faults according to GenerateProbeCascade in RuleChecker [12].

Moreover, Algorithm 1 satisfies Lemma 1.

Lemma 1. ∀i, j ∈ [1,NP], Pi ∧ Pj ≡ f alse when i , j.

Step 2: Generating network-wide probe headers. Based on

SHSs of all switches, Step 2 generates probe headers that match

multiple table rules across different switches, and we call such head-

ers as network-wide probe headers. We refer network-wide probe

headers that exercise the same set of table rules as a network-wide
header set (NHS). For example, if we want P to exercise rules that

are respectively exercised by P1,1, P2,1, ..., PNs ,1 (Px,y denotes the

y-th SHS in the x-th switch), we can generate P via the conjunc-
tion of above SHSs, i.e. P ←

∧
1≤i≤Ns Pi,1. We call P represents

P1,1, ..., PNs ,1. According to Lemma 1, P only represents one SHS

in one switch. We define the SHSs represented by P as follows.

Re(P) ≜ {P | P ∧ P , f alse and P − P = f alse}

Algorithm 2: Generate Network-level Probe Headers
Input: Switch Probe Set Pi, j of every switch

Output: NHSs (P1,P2, ...)
1 Function QueryBDDTree(N , tarдet)
2 if N is a leaf node then
3 return N ;

4 N ′ ← none;

5 if Le f t(N) ∧ tarдet , f alse then
6 N ′ ← QueryBDDTree(Le f t(N), tarдet);

7 if N ′ = none and Riдht(N) ∧ tarдet , f alse then
8 N ′ ← QueryBDDTree(Riдht(N), tarдet);

9 if N ′ , none then
10 N ← N ∧ ¬N ′;

11 return N ′;

12 foreach 1 ≤ n ≤ Ns do
13 Rn ← CreateBDDTree(Pn,1, Pn,2, ..., Pn,NP);

14 P← ∅ ; /* P stores NHSs. */

15 H← f alse; /* Avoid repeated iterations over Pi, j . */

16 for 1 ≤ n ≤ Ns do
17 foreach 1 ≤ m ≤ NP do
18 if Pi, j ∧ H , f alse then
19 P← Pi, j ; /* P is a NHS. */

20 Φ← {}; /* Store represented SHSs. */

21 for n < n′ ≤ Ns do
22 N ← QueryBDDTree(Rn ,P);

23 if N , none then
24 P← P ∧ N ;

25 Φ← Φ ∪ {N} ;

26 Re(P) ← Φ;

27 P← P ∪ {P};

28 H← H ∨ P;

 𝑃ଵ,ଵ∨ 𝑃ଵ,ଶ 𝑃ଵ,ଷ∨ 𝑃ଵ,ସ

 𝑃ଵ,ଵ 𝑃ଵ,ଶ 𝑃ଵ,ଵ 𝑃ଵ,ଶ

 𝑅ଵ← 𝑃ଵ,ଵ ∨ 𝑃ଵ,ଶ ∨ 𝑃ଵ,ଷ ∨ 𝑃ଵ,ସ

𝑸𝒖𝒆𝒓𝒚𝑩𝑫𝑫𝑻𝒓𝒆𝒆ሺ𝑹𝟏, 𝑷𝟏,𝟐ሻ

𝑪𝒓𝒆𝒂𝒕𝒆𝑩𝑫𝑫𝑻𝒓𝒆𝒆ሺ𝑷𝟏,𝟏, . . , 𝑷𝟏,𝟒ሻ

Figure 5: A BDD tree. Black arrows show the procedure of
BuildBDDTree, and blue arrows show the the procedure of
QueryBDDTree.

Intuitively, Step 2 tries to find NHSs that can represent all SHSs in

all switches. We formulate the problem solved by Step 2 as follows.

Definition 2. Step 2 generates P1, P2, ..., PNP that satisfy ∀i ∈
[1,Ns], j ∈ [1,NP],∃x ∈ [1,NP], Pi, j ∈ Re(Px).

The optimization goal of Step 2 is to generate as few NHSs as

possible. However, getting the optimal number of NHSs is NP-hard

and needs long computation time. To this end, we design a greedy

algorithm for NHS generation. The high-level idea of the algorithm

is to make |Re(P)| (size of Re(P)) as large as possible for each P.
To further optimize the efficiency of NHS generation, we propose

a new data structure called BDD tree, a complete binary tree, each

P4Tester: Efficient Runtime Rule Fault Detection for Programmable Data Planes IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA

Algorithm 3: Generate Probe Forwarding Paths
Input: Topology G, Max Probe Size K , Switch S0
Output: Probe forwarding paths

1 Ω ← {} ;

2 Function TraverseST(s)
3 foreach child c of s do
4 Ω ← Ω ∪ {⟨s, Port(s ⇒ c)⟩};

5 TraverseST (c);
6 Ω ← Ω ∪ {⟨c, Port(c ⇒ s)⟩};

7 BuildSTwithBFS(G, S0);
8 TraverseST (S0);
9 S ← {} ; /* S is a segment. */

10 ω ← S0;

11 F ← {} ; /* F stores probe forwarding paths. */

12 foreach 1 ≤ n ≤ |Ω | do
13 l ← |Path(S0,ω)| + |Path(Ω[n].sid, S0)| + |S| + 1;

14 if l ≥ K then
15 F ← F ∪ {Path(S0,ω) ∪ S ∪ Path(Ω[n − 1].sid, S0)};

16 ω ← Ω[n].sid ;

17 S ← {};

18 seдment ← seдment ∪ {Ω[n]};

19 F ← F ∪ {Path(S0,ω) ∪ S ∪ Path(Ω[n].sid, S0)};

of whose nodes stores a BDD. Figure 5 shows a BDD tree example.

For a BDD tree, the BDD of a node is the disjunction of its children.

node N comprises two properties, i.e. Le f t(N) and Riдht(N), to
represent the two children of N . There are two operations for the

BDD tree. (1) CreateBDDTree returns the root node of a newly-

created BDD tree whose leaf nodes store all SHSs of a switch. (2)

QueryBDDTree (Line 1-11 in Algorithm 2) returns a leaf node which

matches a target BDD. Furthermore, QueryBDDTree removes the

queried leaf node from the BDD tree, which guarantees once query

to any SHS and can effectively improve the efficiency of generating

NHSs.

Algorithm 2 shows the basic procedure of NHS generation. Fur-

thermore, we can generate one probe header for each generated

NHS via solving BDD AnySAT, which has linear complexity. The

overall time complexity of Step 2 is O(NsNP loд(NP)).

Step 3: Generating source routing labels. Step 3 is to generate a
label stack that forwarding probes according to network topologies.

As Maximum Transmission Unit (MTU) limits probe packet sizes,

a probe can only convey a certain number of labels at once. Thus,

there could be multiple probes for one NHS to test corresponding

rules in different switches.

Algorithm 3 shows the procedure of probe forwarding path gen-

eration, and Figure 6 shows an example of Algorithm 3 to generate

paths for a four-node topology. The main idea of the algorithm

is to generate a global path that includes all switches and to slice

the global path into several segments. Moreover, we control path

slicing to keep the segment size smaller than K , and then the probe

packet size can satisfy the MTU limitation.

In Algorithm 3, S0 is the switch connected to P4Tester terminal.

First, we build a spanning tree (ST) via conducting a breadth-first

P4Tester Terminal

Segments Paths
F [1] 𝑆 𝑆ଷ 𝑆 𝑆ଷ 𝑆

F [2] 𝑆 𝑆ଷ 𝑆

 𝑆ଵ 𝑆ଶ 𝑆ଷ

 𝑆

Probe Forwarding Paths

Global probe forwarding path Ω
Figure 6: An example for generating probe forwarding paths
by Step 3.

search (BFS) on the network topology. Then, we recursively con-

duct pre-order traversal on the ST to build the global path Ω with

TraverseST. Ω is a list of two-tuples ⟨sid, port⟩ as sid denotes the

switch id and port denotes the output port. After getting Ω, we can
generate paths F whose lengths are smaller than K (Line 9-19). We

use Path(x ,y) to denote the shortest path from x to y. As this algo-
rithm will iterate over all nodes in Ω, it will continuously check the
length of the circle Path(S0,ω)∪seдment∪Ω[n]∪Path(Ω[n].sid, S0)
(Line 13). If the circle length surpasses K , the algorithm will create

a new probe forwarding path in F (Line 14-17). Furthermore, the

algorithm should also include the last segment (Line 19). For each

NHS, the probes generated according to F can traverse all switches.

4.2 Probe Update
When rule additional, removal, and modification happen, network

testing systems need to update probe headers and forwarding paths

accordingly. Rule operations may happen in high frequency, requir-

ing quick probe update. P4Tester proposes three efficient schemes

for updating probes.

Time-least probe update. When the controller frequently up-

dates table rules, P4Tester should timely check whether the rule

update event is executed correctly, which is important to guarantee

consistent network update. P4Tester proposes time-least probe up-
date to pursue least time of verifying rule existence. As for adding

a new rule rnew in switch s , time-least update directly generates

the NHS Pnew via Pnew ← rnew .m ∧ ¬Rs and Tr (Pnew) ← {s}
(Rs is the BDD tree root of switch s). Then, P4Tester generates a
new probe for Pnew . As for rule removal, time-least update does

not perform any operation and directly employs current probes to

verify whether the rules have been successfully removed. The time

complexity of time-least update is O(1).

Quantity-least probe update. Time-least update inevitably suf-

fers probe explosion as it generates one new probe for every added

rule and never removes probes whose corresponding rules have

expired. P4Tester proposes quantity-least probe update which opti-

mizes the number of probes. The high-level idea of quantity-least

update is to employ as many existing NHSs as possible to repre-

sent SHSs of updated rules. First, for the switch experiencing rule

update, we recalculate SHSs and rebuild the BDD Tree. Then, we

iterate all existing NHSs and find all SHSs that can be represented

by existing NHSs. After that, we need to generate new probes for

the SHSs which cannot be represented by existing NHSs. Second,

quantity-least update does not need to recompute all probes from

the ground up. Instead, it only recomputes a part of NHSs, which

promises relatively high efficiency.

Hybrid probe update. The above two schemes pursue different

metrics, but they can work jointly to embrace both high efficiency

IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Y. Zhou, J. Bi, Y. Lin, Y. Wang, D. Zhang, Z. Xi, J. Cao, C. Sun

0 2 0 4 0 6 0 8 0 1 0 0
0

2 0
4 0
6 0
8 0

1 0 0

Ru
le C

ove
rag

e (%
)

R a t i o o f A v a l i a b l e S e r v e r s (%)

 A T P G
 P r o n t o
 P 4 T e s t e r
 M o n o c l e

(a) Internet2

0 2 0 4 0 6 0 8 0 1 0 0
0

2 0
4 0
6 0
8 0

1 0 0

Ru
le C

ove
rag

e (%
)

R a t i o o f A v a l i a b l e S e r v e r s (%)

 A T P G
 P r o n t o
 P 4 T e s t e r
 M o n o c l e

(b) Stanford

Figure 7: Fault coverage comparsion of P4Tester, ATPG,
Pronto, and Monocle.
and fewer probes. Hybrid probe update integrating time-least up-

date and quantity-least update comprises two steps. (1) When a rule

update event happens, hybrid update instantly employs time-least

update to check rules and stores the event in a buffer. (2) When

the number of buffered events is larger than a threshold, P4Tester
employs quantity-least update to execute a batch of update events

and to aggregate probes generated by time-least update.

5 EVALUATION
Implementation and setup.We implement a prototype of P4Tester
terminal with about 5000 lines of Java code and use JDD [35] to sup-

port BDD operations. Furthermore, P4Tester agent is implemented

as a piece of P4 code which consists of two tables with two table

rules in total. We deploy P4Tester terminal prototype on a server

with 32GB RAM and 4 Intel E3-1280 3.9GHz CPU cores. We deploy

P4Tester agent on two P4 targets. The first one is BMv2 [36], which

is the widely-used P4 software target. The second one is Wedge

100BF-32X [37] equipped with Tofino ASIC and 32 100GbE ports.

Objectives. We evaluate P4Tester with five objectives.

• We compare P4Tester with three well-known countermea-

sures in terms of probe generation efficiency, probe numbers,

and rule coverage (§5.1).

• We evaluate the scalability of P4Tester when the number of

routers and rules increases (§5.2).

• We evaluate the additional resource usage of P4Tester agent
on the hardware target (§5.3).

• We evaluate the efficiency of P4Tester when rule addition

and rule removal lead to probe update (§5.4).

• We deploy P4Tester on two testbeds and present P4Tester’s
overall efficiency of troubleshooting rule faults on BMv2

switches and Tofino switches (§5.5).

5.1 Comparing P4Tester with Countermeasures
In this part, we compare P4Tester with the three off-the-shelf net-

work testing systems, ATPG, Pronto, and Monocle, with respect to

Table 3: Comparing ATPG, Pronto, P4Tester, andMonocle in
terms of Probe generation time and probe numbers.

ATPG Pronto P4Tester Monocle

Internet2

Time (s) 1992.5 12.3 3.2 -

Probes 35416 32379 13235 103911

Stanford

Time (s) 2807.01 3.48 0.3 -

Probes 3319 5540 1493 15370

fault coverage, probe numbers, and probe generation time. We use two

real-world data sets from Stanford and Internet2. To accommodate

table rules from real-world routers, we develop a P4 program which

forwards packets based on prefixes of IPv4 destination addresses.

The P4 program is used throughout the evaluation experiments.

Rule coverage. Rule coverage is important for fault coverage. We

first evaluate rule coverage when the ratio of available endpoint

servers varies, and we quantify rule coverage via the ratio of rules

that can be checked by network testing systems. As shown in

Figure 7(a) and Figure 7(b), ATPG and Pronto have similar rule

coverage on two data sets. Moreover, their rule coverage grows

linearly with the ratio of available servers. In other words, they

require that all servers support injecting and collecting probes. Oth-

erwise, they can only check a part of table rules, which significantly

compromises testing completeness. Monocle’s rule coverage is 92%

for Internet2 and 83% for Stanford, which is agnostic to the server

numbers because Monocle uses a controller to inject probes and

cannot check the rules that forward packets to servers. Notably,

P4Tester only needs one server to achieve full rule coverage, no

matter how large the network is.

The number of probes. Table 3 summarizes comparison regard-

ing probe numbers. P4Tester generates much fewer probes than

ATPG and Pronto. Specifically, P4Tester reduces the number of

probes by over 59% for Internet2, and by over 55% for Stanford.

Comparing with Monocle, P4Tester reduces the probe number by

about one order of magnitude for the two two data sets. In sum-

mary, P4Tester introduces much less bandwidth overhead than all

the countermeasures.

Probe generation efficiency. As shown in Table 3, the probe

generation time of ATPG is over 100x larger than Pronto, and over

1000x larger than P4Tester . The probe generation time of P4Tester
is less than Pronto by over one order of magnitude for the Stanford

data set. In summary, P4Tester yields much better probe generation

efficiency than the existing server-based probe generation solutions

which employ servers to inject probes.

5.2 Scalability of P4Tester
To show the scalability of P4Tester , we evaluate it in terms of probe

generation efficiency and probe numbers when the number of table

rules and routers varies.

The number of probes. Figure 8(a) and Figure 8(c) show that with

the number of rules per router increasing, the number of probes

grows linearly. When there are more rules per router, P4Tester can
check more table rules with the same probes. Thus, the number of

probes converges to a specific value, revealing that P4Tester probes
can check multiple rules and are of high-usage. Figure 8(b) shows

how the number of routers influences the number of probes on

Internet2. Particularly, the number of probes does not grow too

much with the number of routers due to two reasons. (1) Probe

headers generated for existing routers can also be used to test rules

in a newly-added router. (2) The probe size is big enough to ac-

commodate rule actions in newly-added switches. Through source

routing, P4Tester could direct probes to traverse more switches. In

this respect, one probe of P4Tester could exercise more rules than

existing solutions. For Stanford, as shown in Figure 8(d), the probe

number grows linearly with the number of routers.

P4Tester: Efficient Runtime Rule Fault Detection for Programmable Data Planes IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA

0 2 4 6 8 1 0 1 2
0

2

4

6

Tim
e (s

)

R u l e s p e r R o u t e r (´ 1 0 3)

 S t e p 1 S t e p 2 S t e p 3
 T o t a l N o . o f P r o b e s

0
5
1 0
1 5
2 0

No
. of

 P
rob

es
(´1

03)
(a) Varied rules in Internet2

1 2 3 4 5 6 7 8 90
1
2
3
4

Tim
e (s

)
N o . o f R o u t e r s

 S t e p 1 S t e p 2 S t e p 3
 N o . o f P r o b e s

1 0
1 1
1 2
1 3
1 4
1 5

No
. of

 P
rob

es
(´1

03)

(b) Varied routers in Internet2

0 2 4 6 8 1 0 1 2
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5

Tim
e (s

)

R u l e s p e r R o u t e r (´ 1 0 2)

 S t e p 1 S t e p 2 S t e p 3
 T o t a l N o . o f P r o b e s

0 . 8
1 . 0
1 . 2
1 . 4
1 . 6
1 . 8

No
. of

 P
rob

es
(´1

03)

(c) Varied rules in Stanford

1 3 5 7 9 1 1 1 3 1 50 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5

Tim
e (s

)

N o . o f R o u t e r s

S t e p 1 S t e p 2 S t e p 3
N o . o f P r o b e s

0 . 6
0 . 8
1 . 0
1 . 2
1 . 4
1 . 6
1 . 8

No
. of

 P
rob

es
(´1

03)

(d) Varied routers in Stanford

Figure 8: Probe generation with different numbers of rules and routers.

Probe generation efficiency. As shown in Figure 8(a), Figure 8(b),
Figure 8(c), and Figure 8(d), the time of Step 1 and Step 2 grows

linearly with the number of rules and routers. Moreover, the delay

of Step 3 is ignorant of the number of rules. When there is only one

router, the delay of Step 2 and Step 3 is close to 0s. The above results

indicate that the algorithms of P4Tester present linear scalability
against the number of routers and rules.

5.3 Resource Usage of P4Tester
In this part, we show the hardware resource usage of P4Tester agents
in Tofino, and we build a prototype of the agent that supports 16

source routing labels. As shown in Table 4, one P4Tester agent

only need 5.7% very long instruction word actions to implement

compound actions and 14.1% packet header vector to accommodate

source routing labels, while all the other resources are not required.

Furthermore, the size of packet header vector grows linearly with

the number of source routing labels. In summary, P4Tester agent
brings minor resource overheads to hardware targets and have a

very small impact on the other data plane functions.

5.4 Efficiency of Probe Update
As for probe updating, wemeasure the delay of adding one table rule

with time-least update and the delay of performing one round of

quantity-least update.We repeat each experiment for 1000 times and

show the cumulative delay distribution in Figure 9(a) and Figure 9(b).

As for time-least update, the probe update delay of adding a table

rule is less than 0.5 ms. As for quantity-least update, the delay

varies from several ms to hundreds of ms, which largely depends

on the data sets. The Stanford data set has fewer table rules per

router than the Internet2 data set. Thus, the delay of Stanford will

Table 4: Additional hardware resources consumed by
P4Tester with 16 source routing labels. The values are nor-
malized by the usage of Switch.p4.

Resources Usage

Match Crossbar 0%

Static Random Access Memory 0%

Ternary Content Addressable Memory 0%

Very Long Instruction Word Actions 5.7%

Hash Bits 0%

Stateful Arithmetic and Logic Units 0%

Packet Header Vector 14.1%

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Cu
mu

lati
ve

Dis
trib

uti
on

U p d a t e T i m e (m s)

 S t a n f o r d A d d
 I n t e r n e t 2 A d d

(a) Time-least Probe Addition

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0
0 . 0

0 . 5

1 . 0

1 . 5

Cu
mu

lati
ve

Dis
trib

uti
on

U p d a t e T i m e (m s)

 S t a n f o r d A d d S t a n f o r d R e m o v e
 I n t e r n e t 2 A d d I n t e r n e t 2 R e m o v e

(b) Quantity-least Probe Update

Figure 9: Delay distribution of time-least and quantity-least
rule update.

be smaller than that of Internet2 because quantity-least update

needs to regenerate the SHSs of one router.

5.5 Efficiency of Rule Testing
To demonstrate how efficiently P4Tester can troubleshoot real-world
P4-enabled networks, we build two testbeds composed of BMv2 and

Tofino switches, which is shown in Figure 10. The BMv2 testbed is

based on the public topology of Stanford backbone network. As we

only have one Tofino switch, we take rules from one router in the

Stanford data set and install them into the switch. In the experiment,

we remove a certain number of randomly-selected rules. Then, we

employ P4Tester running in a separate server to detect and locate

missed rules. To quantify the testing efficiency, we measure the

delay between the time of injecting probes and the time of locating

all faults. Thus, we show the rule testing delay when the number

of missed rules varies. We repeat each experiment for 1000 times.

Time of troubleshooting rule faults. As for BMv2 testbed, we

can see from Figure 11(a) that checking rule faults takes less than

0.88s when the number of missed rules is less than 10. Furthermore,

the delay of checking rule faults grows slowly with the number of

missed rules, which indicates that P4Tester can detect and locate

missed rules with high efficiency. As for Tofino testbed, Figure 11(a)

shows that the rule testing delay of P4Tester also increases mildly

with the number of missed rules. The above results testify that

P4Tester can efficiently troubleshoot multiple rule missing faults

on both software targets and hardware targets.

P4Tester
Terminal

BMv2 Testbed Tofino Testbed
P4Tester
Terminal

Figure 10: Testbed typologies.

IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Y. Zhou, J. Bi, Y. Lin, Y. Wang, D. Zhang, Z. Xi, J. Cao, C. Sun

1 2 3 4 5 6 7 8 9 1 00 . 8 4

0 . 8 6

0 . 8 8

0 . 9 0

N o . o f M i s s e d R u l e s

De
tec

tio
n D

ela
y (

s) 2 5 % ~ 7 5 % M i n ~ M a x
 M e d i a n L i n e M e a n

(a) BMv2 testbed

1 2 3 4 5 6 7 8 9 1 00 . 7 8

0 . 8 0

0 . 8 2

0 . 8 4

N o . o f M i s s e d R u l e s
De

tec
tio

n D
ela

y (
s) 2 5 % ~ 7 5 % M i n ~ M a x

 M e d i a n L i n e M e a n

(b) Tofino testbed

Figure 11: Delay of using P4Tester to detect multiple rule
faults in the two testbeds.

6 DISCUSSION
With P4Tester, network operators only need one server to work as

P4Tester terminal. When more servers are available, P4Tester also

permits deploying multiple terminals on the servers. Meanwhile,

all the table entries and table update events should be synchronized

among the terminals, but each terminal only needs to generate

the probes that can test a portion of table rules. For large-scale

networks which may have multiple controllers, P4Tester can scale

flexibly via deploying multiple terminals, which is our future work.

7 CONCLUSION
As the programmable data plane grows in popularity and maturity,

ensuring its reliability and availability is of great importance but

challenges the state-of-the-art network testing systems. P4Tester
is the first low-overhead and high-fault-coverage network testing

system targeting runtime rule faults on programmable data planes.

P4Tester makes innovations on how to generate probes and how

to forward probes. P4Tester performs analysis on P4 programs to

generate probes and presents a novel probe model that uses source

routing to forward probes and piggybacks rule actions in probes.

P4Tester comes up with a series of algorithms to improve the ef-

ficiency of probe generation and update. Compared with existing

solutions, P4Tester yields remarkable benefits, including quick probe

generation and full fault coverage with only one server and much

fewer probes.

ACKNOWLEDGEMENT
This research is supported by National Key R&D Program of China

(2017YFB0801701) and the National Science Foundation of China

(61872426). Yangyang Wang is the corresponding author. We thank

all anonymous reviewers for their constructive comments.

REFERENCES
[1] Pat Bosshart, Glen Gibb, Hun-seok Kim, George Varghese, NickMckeown, Martin

Izzard, Fernando Mujica, and Mark Horowitz. Forwarding metamorphosis: Fast

programmable match-action processing in hardware for sdn. In Proceedings of
SIGCOMM, 2013.

[2] Sharad Chole, Isaac Keslassy, Ariel Orda, Tom Edsall, Andy Fingerhut, Sha Ma,

Anirudh Sivaraman, Shay Vargaftik, Alon Berger, Gal Mendelson, Mohammad

Alizadeh, and Shang-Tse Chuang. drmt: Disaggregated programmable switching.

In Proceedings of SIGCOMM, 2017.

[3] Pat Bosshart, Glen Gibb, Hun-seok Kim, George Varghese, Nick Mckeown, Mar-

tin Izzard, Fernando Mujica, and Mark Horowitz. P4: Programming protocol-

independent packet processors. SIGCOMM CCR, 44(3), 2014.
[4] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and

Walter Willinger. Sonata: Query-driven network telemetry. In Proceedings of
SIGCOMM, 2018.

[5] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer

Rexford. Hula: Scalable load balancing using programmable data planes. In

Proceedings of SOSR, 2016.
[6] RuiMiao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, andMinlan Yu. Silkroad:

Making stateful layer-4 load balancing fast and cheap using switching asics. In

Proceedings of SIGCOMM, 2017.

[7] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,

Changhoon Kim, and Ion Stoica. Netcache: Balancing key-value stores with fast

in-network caching. In Proceedings of SOSP, 2017.
[8] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,

Changhoon Kim, and Ion Stoica. Netchain: Scale-free sub-rtt coordination. In

Proceedings of NSDI, 2018.
[9] Amedeo Sapio et al. In-network computation is a dumb idea whose time has

come. In Proceedings of HotNets, 2017.
[10] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and Robert

Soulé. Netpaxos: Consensus at network speed. In Proceedings of SOSR, 2015.
[11] Peter Perešíni, Maciej Kuźniar, and Dejan Kostić. Monocle: Dynamic, fine-grained

data plane monitoring. In Proceedings of CoNEXT, 2015.
[12] Peng Zhang, Cheng Zhang, and Chengchen Hu. Fast testing network data plane

with rulechecker. In Proceedings of ICNP, 2017.
[13] Xitao Wen, Kai Bu, Bo Yang, Yan Chen, Li Erran Li, Xiaolin Chen, Jianfeng Yang,

and Xue Leng. Is every flow on the right track?: Inspect sdn forwarding with

rulescope. In Proceedings of INFOCOM, 2016.

[14] Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKeown. Auto-

matic test packet generation. IEEE/ACM Trans. Netw., 22(2), 2014.
[15] Yu Zhao, Huazhe Wang, Xin Lin, Tingting Yu, and Chen Qian. Pronto: Efficient

test packet generation for dynamic network data planes. In Proceedings of ICDCS,
2017.

[16] Naga Katta, Omid Alipourfard, Jennifer Rexford, and David Walker. Cacheflow:

Dependency-aware rule-caching for software-defined networks. In Proceedings
of SOSR, 2016.

[17] Maciej Kuźniar, Peter Perešíni, and Dejan Kostić. What you need to know about

sdn flow tables. In Proceedings of PAM, 2015.

[18] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray Huang, Dave

Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis

Kurien. Pingmesh: A large-scale system for data center network latency mea-

surement and analysis. In Proceedings of SIGCOMM, 2015.

[19] P. Zhang. Towards rule enforcement verification for software defined networks.

In Proceedings of INFOCOM, 2017.

[20] Jed Liu, William Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun Lee, Robert

Soulé, Han Wang, Călin Caşcaval, Nick McKeown, and Nate Foster. p4v: Practical

verification for programmable data planes. In Proceedings of SIGCOMM, 2018.

[21] Radu Stoenescu et al. Debugging p4 programs with vera. In Proceedings of
SIGCOMM, 2018.

[22] Lucas Freire, Miguel Neves, Lucas Leal, Kirill Levchenko, Alberto Schaeffer-Filho,

and Marinho Barcellos. Uncovering bugs in p4 programs with assertion-based

verification. In Proceedings of SOSR, 2018.
[23] Andres Nötzli, Jehandad Khan, Andy Fingerhut, Clark Barrett, and Peter Athanas.

P4pktgen: Automated test case generation for p4 programs. In Proceedings of
SOSR, 2018.

[24] Yibo Zhu, Ben Y. Zhao, Haitao Zheng, Nanxi Kang, Jiaxin Cao, Albert Greenberg,

Guohan Lu, Ratul Mahajan, Dave Maltz, Lihua Yuan, and Ming Zhang. Packet-

level telemetry in large datacenter networks. In Proceedings of SIGCOMM, 2015.

[25] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Mazières, and

Nick McKeown. I know what your packet did last hop: Using packet histories to

troubleshoot networks. In Proceedings of NSDI, 2014.
[26] Cheng Zhang, Jun Bi, Yu Zhou, Jianping Wu, Bingyang Liu, Zhaogeng Li, Ab-

dul Basit Dgar, and Yangyang Wang. P4db: On-the-fly debugging of the pro-

grammable data plane. In Proceedings of ICNP, 2017.
[27] Jean Francis Michon et al. Graph based algorithms for boolean function manipu-

lation. 2005.

[28] Carl A. Sunshine. Source routing in computer networks. SIGCOMM Comput.
Commun. Rev., 7(1), 1977.

[29] Barefoot Networks. Barefoot tofino switch. Website, 2019. https://

barefootnetworks.com/technology/.

[30] P4 Language Consortium. P4_16 prototype compiler. Website, 2019.

https://github.com/p4lang/p4c.

[31] Maciej Kuzniar, Peter Peresini, and Dejan Kostic. Proboscope: Data plane probe

packet generation. Technical report, 2014.

[32] James C. King. Symbolic execution and program testing. Commun. ACM, 19(7),

1976.

[33] sFlow. sflow. Website, 2019. https://sflow.org/.

[34] The P4 Language Consortium. Consolidated switch repository. Website, 2019.

https://github.com/p4lang/switch.

[35] Arash Vahidi. Jdd. Website, 2019. https://bit.ly/2SZjMjp.

[36] P4 Consortium. P4-bmv2. Website, 2019. https://github.com/p4lang/behavioral-

model.

[37] Edgecore Networks. Wedge 100bf-32x. Website, 2019. https://bit.ly/2TfkI2p.

https://barefootnetworks.com/technology/
https://barefootnetworks.com/technology/
https://sflow.org/
https://github.com/p4lang/switch
https://bit.ly/2TfkI2p

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Preliminary to P4
	2.2 Preliminary to Runtime Rule Faults
	2.3 Related Work

	3 Design of P4Tester
	3.1 Key Ideas of P4Tester
	3.2 Architecture of P4Tester

	4 Probe Generation and Update in P4Tester
	4.1 Probe Generation
	4.2 Probe Update

	5 Evaluation
	5.1 Comparing P4Tester with Countermeasures
	5.2 Scalability of P4Tester
	5.3 Resource Usage of P4Tester
	5.4 Efficiency of Probe Update
	5.5 Efficiency of Rule Testing

	6 Discussion
	7 Conclusion
	References

