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ABSTRACT
Major commercial client-side video players employ adaptive bitrate

(ABR) algorithms to improve user quality of experience (QoE). With

the evolvement of ABR algorithms, increasingly complex methods

such as neural networks have been adopted to pursue better perfor-

mance. However, these complex methods are too heavyweight to

be directly implemented in client devices, especially mobile phones

with very limited resources. Existing solutions suffer from a trade-

off between algorithm performance and deployment overhead. To

make the implementation of sophisticated ABR algorithms prac-

tical, we propose PiTree, a general, high-performance and scalable
framework that can faithfully convert sophisticated ABR algorithms

into lightweight decision trees to reduce deployment overhead. We

also provide a theoretical upper bound on the optimization loss

during the conversion. Evaluation results on three representative

ABR algorithms demonstrate that PiTree could faithfully convert

ABR algorithms into decision trees with <3% average performance

degradation. Moreover, comparing to original implementation so-

lutions, PiTree could save operating expenses for large content

providers.

CCS CONCEPTS
• Information systems → Multimedia streaming; • Comput-
ing methodologies → Sequential decision making.
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Table 1: Representative ABR Algorithms

Publication Year: 2012 2018

Rate-based Festive [38] Panda [44] Squad [61]

Buffer-based BBA [34] BOLA [56] BOLA-E [55]

Hybrid (Non-ML) Elastic [25] RobustMPC [65] Quetra [63]

Hybrid (ML) CS2P [58] Pensieve [47] HotDASH [53]

1 INTRODUCTION
In recent years, video streaming traffic plays a prominent role in

Internet traffic [36]. Meanwhile, online video clients have increas-

ingly higher demands on the video quality of experience (QoE) [47],

which directly correlates with content provider revenue [14, 27].

Therefore, as presented in Table 1, a series of adaptive bitrate (ABR)

algorithms are proposed to optimize the video quality, some of

which have already been used by content providers [55, 56]. These

algorithms usually run on client-side video players [47] that dy-

namically select a bitrate based on network conditions. ABR al-

gorithms have to handle complicated situations including differ-

ent QoE demands [47, 56, 64], high variation of network through-

put [33, 58], and the cascading effect between actions [47]. There-

fore, sophisticated algorithms such as Mixed Integer Linear Pro-

gramming (MILP) [65], Lyapunov optimization [56], and neural

networks [32, 45, 47, 53, 64] are adopted to improve ABR perfor-

mance.

However, the expensive computation overhead of increasingly

complex ABR algorithms prevents them from traditional in-player

implementations [47, 65]. Especially, a sharply increasing number

of users choose to play videos through smart TVs [53] and mobiles

devices such as pads or cellphones [49, 62]. The latest statistics

indicate that mobile devices account for 62% of online video views

in 2018, and this number is increasing rapidly [4]. These mobile de-

vices often have very limited computation resources, which cannot

satisfy the resource requirements of solving complex optimization

problems [65, §2.2]. Thus, it is difficult to directly integrate ABR

algorithms into HTML pages and implement them in client-side

video players [11]. The situation becomes even worse when pursu-

ing higher performance with even more complex optimizations in

future research.

To address this problem, ABR algorithm designers propose many

solutions, which, however, fail to achieve high performance and
scalability at the same time. Two main categories of solutions in-

clude [§2.2]: 1) Compromising performance to reduce overhead. Ro-
bustMPC [65] provides an online version of its MILP-based algo-

rithm (FastMPC) by enumerating some situations and constructing
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a solution table for online lookup. FastMPC, however, is a case-

specific method for RobustMPC and actually drastically degrades

the performance belowmany strawman baselines [65]. 2)Offloading
computation to remote ABR servers. Pensieve [47] and HotDASH [53]

suggest offloading the heavyweight computation to remote ABR

servers, requiring video clients to send requests to the ABR servers

when they need to make decisions. The content providers, however,

have to introduce and maintain additional servers to specifically

provide ABR optimization services. The operating expenses (OPEX)

will be significantly increased. Such solutions cannot scale to real-

world large-scale deployment.

Inspired by recent advances in interpreting complicated mod-

els [16, 46, 50, 66], we could implement sophisticated algorithms

in practice by converting them into other faithful but lightweight

representations. Our key observation is that some representations

of algorithms (e.g., decision tree) have similar expressiveness but

are more lightweight and efficient compared to those sophisticated

representations [15, 16].

Based on this observation, we propose PiTree, a general, high-
performance, and scalable framework to bridge the gap between

offline design and online implementation of ABR algorithms using

decision trees. The key idea of PiTree is to faithfully convert sophis-

ticated algorithms into lightweight decision trees to simultaneously

achieve high performance and implementation scalability. Due to

the high dimension of the decision space of ABR algorithms [§3.1]

and the cascading effects between actions [47], however, we are

challenged to faithfully and efficiently convert sophisticated ABR

algorithms into decision trees. In response, PiTree innovatively

adopts imitation learning [35] to faithfully convert ABR algorithms

to decision trees and employs a virtual player to efficiently collect

unbiased data. The original ABR algorithm acts like a teacher who

continuously corrects the actions of the decision tree (student).

We also provide a theoretical analysis of the upper bound of the

optimization loss when implementing the decision tree to process

online videos.

This paper makes the following contributions:

• We illustrate the problem of practically implementing sophis-

ticated ABR algorithms for content providers [§2.2]. We then

propose PiTree, a general, high-performance, and scalable frame-

work for practical implementation of ABR algorithms using

decision trees [§3].

• We present an imitation learning-based decision tree training

algorithm [§3.2] and provide a theoretical analysis on the upper

bound the average optimization loss of PiTree [§3.3].
• We evaluate PiTree with both simulations and real-world im-

plementations. Results show that PiTree could convert state-

of-the-art ABR algorithms into lightweight decision trees with

negligible performance degradation and little overhead, thus

save millions of dollars for content providers [§4].

To the best of our knowledge, PiTree is the first general frame-

work to make it practical to implement state-of-the-art sophisti-

cated ABR algorithms on client-side video players. PiTree is avail-
able at https://transys.io/pitree. We believe that PiTree will accel-
erate the deployment of new sophisticated ABR algorithms with

higher performance.

2 BACKGROUND AND MOTIVATION
2.1 ABR Streaming
Dynamic Adaptive Streaming over HTTP (DASH) [57] is the pre-

dominant streaming video delivery method today. In DASH sys-

tems, each video is partitioned into chunks (e.g., 4-second blocks),

where each chunk is encoded in multiple bitrates. A higher bitrate

indicates higher video quality. When a user plays a video on the

client-side player, the ABR algorithm decides the appropriate bitrate

to download for the next chunk and downloads the video chunk

into the playback buffer on video clients. As shown in Table 1,

ABR algorithms can be categorized into rate-based methods, which

make decisions with network throughput information, buffer-based
methods, which make decisions based on video player buffer, and

hybrid methods, utilizing information from network and buffer.

It is well-established that higher QoE follows from 1) higher

average video bitrate, 2) fewer rebuffering events, and 3) higher

video bitrate smoothness [47, 53, 64]. These factors, however, are

often conflicting with each other in the real world. For example,

in a network with highly fluctuating throughput, a conservative

policy to minimize rebuffering events may lead to lower average

bitrate. Meanwhile, the instability of network conditions makes a

precise prediction for future bandwidths challenging. Moreover,

bitrate selection for a single chunk will affect the future states

of video players, which is known as the cascading effect of ABR
systems [47]. All these factors make the optimization of QoE ex-

ceptionally challenging. Existing solutions have already achieved

significant improvements in addressing conflicts above. However,

since there still exists a gap between current ABR algorithms and

offline optimal [14, 47], further evolvement of ABR algorithms are

still needed for better performance [24].

2.2 Motivation
With the increase of algorithm complexity, sophisticated ABR al-

gorithms are difficult to be deployed into client-side video players

in practice. First, loading heavyweight computation models (e.g.,
neural networks [32, 45, 47, 53]) will drastically increase the page

load time by tens of seconds [§4.3.1], which might make impatient

users leave the page [41]. Second, solving complex optimizations

on end devices with constrained computation resources will in-

troduce excessive decision latency by up to 1000x [§4.3.2], which

might exceed the video chunk lengths (often 2 to 4 seconds [38])

and severely degrade the QoE of the videos [65]. Finally, additional

software plugins (e.g., CPLEX [2], TensorFlow [13]) might be re-

quired on video clients, which further poses significant barriers

for large-scale deployments [30]. The implementation practicality

of ABR algorithms severely hinders the exploration of better ABR

algorithms.

In response, two categories of possible solutions have been pro-

posed by recent efforts [47, 53, 56, 65]. Nevertheless, these re-

searches fail to achieve high performance and scalability at the

same time.

Compromising performance to reduce overhead.Robust-MPC [65]

proposed to pre-compute solutions for all network states, construct

results into a table, and look up the table when running online.

This technique is known as FastMPC. However, the performance

degradation brought by the simplification is also drastic. FastMPC

https://transys.io/pitree
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Figure 1: Load testing results of remote ABR servers. {R, P,
H} refer to {RobustMPC [65], Pensieve [47], HotDASH [53]}.
We build ABR servers with tornado [6] and test the capacity
with vegeta [7] from another directly-connected server.

could lead to a performance drop of up to 30%, which is worse than

many strawman baselines [65]. Meanwhile, as the solutions are

case-specific, ABR designers still have to consider how to simplify

and relax their designs with the practicality of online implementa-

tion and performance maintenance in mind [17, 65].

Offloading computation to remote ABR servers. Many recent

ABR algorithms [14, 47, 53, 65] offload the heavyweight online

computation tasks to remote ABR servers. Introducing new servers,

however, significantly increases the operating expenses for content

providers [40] and thus are not scalable to large-scale deployment.

As shown in Figure 1, due to high computation complexity (Fig-

ure 1(a)), the ABR server capacity ranges from 20-1000 request-

s/second/core (Figure 1(b)). However, there might be up to millions

of concurrent connections for even one streaming video [5, 30],

let alone billions of videos provided by content providers on the

Internet [9]. Thus, introducing remote ABR servers may increase

the OPEX by up to millions of dollars [§4.4.1] for content providers,

which makes the implementation of those algorithms impractical

in large-scale deployments.

Employing more complex algorithms in future ABR designs will

make the matter worse. Thus, we are motivated to find a general,
high-performance, and scalable method to practically implement

sophisticated ABR algorithms onto client-side video players, which

could relieve ABR designers from considering the practicality is-

sues and make them focus on optimizing the performance of ABR

algorithms.

3 PITREE DESIGN
In this section, we first discuss our design choices and challenges

on using decision tree in PiTree [§3.1]. We then present the deci-

sion tree training algorithm based on imitation learning [§3.2] and

provide a theoretical analysis on the upper bound of the average

optimization loss of PiTree [§3.3].

3.1 Design Choice and Challenge
3.1.1 Design Choice. As introduced in §1, the design goal of PiTree is
to faithfully convert sophisticated ABR algorithms into lightweight

and efficient models. Candidates for the target model after conver-

sion include linear regression [46, 50], nonlinear regression [31],

and policy sketches [59], etc. PiTree employs decision trees due to

the following reasons.

Using Decision Trees
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• Observations.
• Although models are usually complex, most classifiers are 

able to faithfully approximate with linear functions in a local 
neighbor [LIME, LEMNA].

• Decisions of ABR algorithms are usually made based on the 
combination of several considerations (several optimization 
objectives).

internal nodes

leaf nodes

state space
decision boundary

low local 
approximation 

error

Figure 2: The decision tree can accurately approximate the
original decision boundary.

• The rich expressiveness of decision trees enables the high faith-

fulness of conversion because they are non-parametric and could

represent complex policies [20]. As illustrated in Figure 2, de-

cision trees can efficiently approximate the original algorithm

even with highly nonlinear decision boundary since they are

flexible to scale down to finer granularity when needed.

• Decision trees are lightweight for video players during imple-

mentation. Since binary decision trees are comprised of condi-

tional judgments, they could be easily implemented with branch-

ing clauses in JavaScript. Our evaluation shows that implement-

ing a decision tree with 100 leaf nodes only increases the page

size by <1% (from 381KB to 383KB) [§4.3].

• The structure of decision trees resembles the decision logic of

ABR algorithms, which usually contain several judgments from

different aspects. For example, optimizing QoE needs to select

a high bitrate for the next chunk under the conditions of high

current buffer occupancy and network throughput (avoiding

rebuffer) and also high current bitrate (ensuring smoothness).

3.1.2 Design Challenge. Since decision tree training is a supervised
learningmethod, it is designed to optimize the loss function (usually

the average prediction accuracy [28]) with a large labelled dataset

under the distribution of the whole state space [28, 29]:

π̂ = argmin

π ∈Π

(
Es∼dπ

[
Iπ (s),a

] )
(1)

where dπ is the average distribution of states when using decision

tree policy π . E denotes the expectation over policy π in the set

of all policies Π. s and a are the state and action during bitrate

adaption. Iπ (s),a equals to 1 if and only if π (s) , a, and equals to

0 otherwise. However, it is difficult to directly compute the proba-

bility distribution of states since the distribution is coupled with

traffic throughput, video length, policy preferences, etc. Some re-

cent research efforts exhaustively search the action of each state

by uniformly sampling in the whole state space [14, 65], which

is both inefficient and biased. The dimension of the state space is

often high (25 dimensions in Pensieve [47]), and the enumeration

of all combinations is inefficient. Meanwhile, since the frequency

in the state space might not be distributed uniformly in real world

traces, uniformly sampling in the state space might be biased and

degrade the performance. In response, we employ the design of

a virtual player [47, 55] and simulate ABR algorithms with real-

world network traces. Compared to packet-level emulations, virtual
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players are fast and efficient since they only calculate chunk-level

information. We then collect the state-action pairs during simula-

tions, which are unbiased, since they are generated with real-world

traces.

However, faithfully converting ABR algorithms into decision

trees with trace-based simulations is also challenging. Due to the

cascading effect of ABR algorithms in the video client, even when

the prediction is accurate, performance of the converted decision

tree might still be low. As shown in Figure 3, a wrong decision may

bring the decision tree into a region of unexperienced state space.

The decision tree might thus make more mistakes since it has no

knowledge about that region of state space. This will further drive

the decision tree off the trajectory and worsen the performance.

To address this challenge, inspired by recent advances in imitation

learning [52], PiTree continuously simulates the decision tree, and

lets the original ABR algorithm (teacher) correct the wrong deci-

sions made by that decision tree (student). The decision tree will

gradually learn how to make decisions in the whole state space.

3.2 Decision Tree Generation
The overview of PiTree is presented in Figure 4. To convert so-

phisticated ABR algorithms into decision trees, PiTree uses a vir-
tual player [14, 47, 55] to efficiently simulate the dynamics of a

real video player and employs imitation learning [16, 35] to im-

prove the faithfulness of the decision tree. With imitation learning,

PiTree continuously simulates the performance of the decision tree,

and corrects the errors made by the decision tree according to the

results of the original ABR algorithm. As shown in Algorithm 1, the

imitation learning-based decision tree training algorithm contains

the following steps:

Step 1: Initialization. For each ABR algorithm π∗, PiTree first sim-

ulates the algorithm in a virtual player to collect initial state-action
pairs (S,A) for decision tree training (line 1). The virtual player is

a trace-based chunk-level simulator that could precisely mimic the

Algorithm 1: PiTree training based on imitation learning.

Input: ABR Algorithm π∗.
Output: Decision Tree πM .

(S,A) ←VirtualPlay(π∗)1

foreach i ∈ [1, · · · ,M] do2

πi ←TrainDT(S,A)3

(Si ,Ai ) ←VirtualPlay(πi )4

A∗i ←Predict(π∗,Si )5

Aggregate S← S ∪ Si ,A← A ∪ A
∗
i6

behaviors of an actual video player with traces and video manifests.

For a certain ABR algorithm π∗, the virtual player simulates the

algorithm with network traces and video manifests as input. In

reality, content providers could use public network traces [10, 51]

or collected historical traces [14] for simulation. Moreover, our

evaluation shows that PiTree has strong generalization ability if the

network traces used at the training phase are statistically different

from those in the test environment [§4.4.4].

Specifically, when the ABR algorithm generates a bitrate decision

of the following chunk according to current states, the virtual player

calculates the states (e.g., rebuffer, download time, etc.) at the time

of that chunk has been downloaded. The ABR algorithm then takes

those states, generates the bitrate decision (action) for the next

chunk, and sends the action back to the virtual player. Those state-

action pairs are initialized as (S,A).
Step 2: TrainDT. After initialization, PiTree goes into the imitation

learning loop (line 2-6). At the i-th iteration, we first train a decision
tree π (student) with current state-action pairs (samples) (S,A) us-
ing Classification and Regression Tree (CART) [28], a well-adopted

decision tree training algorithm (line 3). The decision tree takes

exactly the same inputs as the original ABR algorithms. Instead of

using the 0-1 loss for prediction accuracy (Equation 1), we employ

the normalized square loss as the training loss during decision tree

generation:

ℓ(r ; r0) =
(r − r0)

2

(Rmax − Rmin )2
, Rmin ⩽ r ⩽ Rmax (2)

where r = π (s), r0 = π∗(s). s is the current state as introduced

in Equation 1. Rmax and Rmin are the maximum and minimum

bitrates. The intuition behind using the square loss is to penalize

student’s bitrates that are far from those of the teacher since they

have more influence on the playback buffer, etc. We also discuss

other properties of square-loss function in §3.3. The CART algo-

rithm then greedily splits the samples into leaf nodes to minimize

the loss function until either the number of leaf nodes of the deci-

sion tree reaches the maximum threshold set by network operators,

or all samples have been completely split.

Step 3: VirtualPlay. PiTree then simulates the decision tree πi in
the virtual player and collects a series of new state-action pairs

(Si ,Ai ) (line 4). At this time, although student πi has already known
how to make decisions when facing with the states fed in training,

independently simulating πi might lead to poor performance. As

illustrated in Figure 3, due to the cascading effect, many states

in Si experienced by student πi in the simulation might not be



experienced during the training in this iteration. We still need to

correct the decision tree policy in the following step.

Step 4: Correction. Thus, we feed the states in Si to the original

ABR algorithm π∗ (teacher), and collect the actions A∗i made by the

teacher (line 5). Finally, we aggregate the student’s states and the

teacher’s actions (Si ,A
∗
i ) with the current state-action pairs (S,A)

(line 6), and go back to Step 2 to continue the next iteration. In this

case, when training the decision tree πi+1 in the next iteration, it

will learn from the mistakes made by the last iteration. The loop

continues until it reaches the maximum iteration number (M) set

by the user. The decision tree generated by the last iteration will

then be implemented into client-side video players.

3.3 Theoretical Analysis
As introduced above, there are two hyper-parameters set by the net-

work operators: the maximum number of iterationM and the max-

imum number of leaf node N . We discuss the parameter settings of

M and N in §4.4.3. In this section, we provide a theoretical analysis

on the bound of the average optimization loss of PiTree (unfaith-
fulness) w.r.t.M when implementing the decision tree online. We

begin by proving the loss function of PiTree is both Lipschitz [39]

and strongly convex:

Theorem 3.1. ℓ(r ; r0) in Equation 2 is both Lipschitz and strongly
convex.

Proof. ∀r0, r1, r2 ∈ [Rmin ,Rmax ], we have

|ℓ(r1; r0) − ℓ(r2; r0)| =
|(r1 − r0)

2 − (r2 − r0)
2 |

(Rmax − Rmin )2

=
|r1 + r2 − 2r0 | · |r1 − r2 |

(Rmax − Rmin )2

⩽
(|r1 − r0 | + |r2 − r0 |) · |r1 − r2 |

(Rmax − Rmin )2

⩽

(
2

Rmax − Rmin

)
|r1 − r2 |

(3)

The last inequality holds because ℓ(r ; r0) is defined only in [Rmin ,Rmax ].

Thus ℓ(r ; r0) is Lipschitz with Lipschitz constant L = 2/(Rmax −

Rmin ). Similarly, we could also demonstrate that ℓ(r ; r0) is strongly
convex (details omitted for brevity): ∀λ ∈ [0, 1], we have:

ℓ(λr1 + (1 − λ)r2; r0) ⩽

λℓ(r1; r0) + (1 − λ)ℓ(r2; r0) − (ν/2)λ(1 − λ)(r1 − r2)
2

(4)

with strong convexity constant ν = 2/(Rmax − Rmin )
2
. □

Since the loss function ℓ(r ; r0) is both Lipschitz and strongly

convex on its domain, and also the output actions of ABR algo-

rithms (bitrates) are discrete, we could extend the Theorem 3.3

and Theorem 3.4 introduced in [52] with techniques from [39]. We

thus have the following upper bound of the average optimization

loss when the decision tree generated by PiTree independently

processes videos online:

Theorem 3.2. For any δ > 0, with training loss εM , there exists a
policy π̂ ∈ {π1, · · · ,πM } s.t. the average optimization loss satisfies:

Es∼dπ̂
[
ℓ
(
π̂ (s);π∗(s)

) ]
⩽ εM + Θ(1/T ) (5)

with probability at least 1 − δ as long asM = Θ(T log(1/δ )).T is the
number of chunks in the video used in the virtual player.

Proof. Let Qπ ′
t (s,π ) denote the t-step cost of executing action

a in initial state s and then following policy π ′:

Qπ ′
t (s,a) =

(
a − π∗(s1)

)
2

+

t∑
τ=2

(
π ′(sτ ) − π

∗(sτ )
)
2

(6)

where sτ is the state at the time τ . Thus we have ∀a, t ∈ [1,T ],

Qπ ∗
T−t+1(s,a) −Q

π ∗
T−t+1

(
s,π∗(s)

)
=
(a − π∗(s))2

(Rmax − Rmin )2
⩽ 1 ≜ u (7)

Hence the proof follows [52] and [39] with the fact that u = 1. □

π̂ could be found by cross-validation among decision trees at

different iterations, which is usually the decision tree from the last

iteration πM in our experiments. Thus we provide an upper bound

for the average optimization loss of PiTree. The training loss εM is

related to the complexity of original ABR algorithm and the number

of leaf nodes N (expressiveness of decision tree). Moreover, our

evaluation demonstrates that PiTree is quite robust to the number

of leaf nodes [§4.4.3].

4 EVALUATION
We apply PiTree over three representative ABR algorithms [47,

53, 65], with three network traces, and on three QoE metrics. We

introduce implementation details in §4.1 and evaluate PiTree by
answering the following questions:

• Performance. Can PiTree faithfully convert sophisticated ABR

algorithms into decision trees? Our evaluation results demon-

strate that the average performance degradation caused by PiTree is
within 3% for all three ABR algorithms [§4.2].

• Overhead. How much resources will PiTree consume when

algorithms are executed online? We demonstrate that the page

size, decision-making latency, and runtime memory utilization

of PiTree-based methods are reduced significantly compared to

the original ones [§4.3].

• Deployment Efforts. Do network operators need to pay many

additional efforts to deploy PiTree in practice? Our evaluation

shows that PiTree , PiTree could save considerable operating

expenses, consume acceptable additional offline training time,

and have robust parameter settings and strong generalization

ability [§4.4].

4.1 Experiment Setup
4.1.1 Video Sample. We evaluate PiTreewith “EnvivoDash3” video
from the MPEG-DASH reference videos with a length of 193 sec-

onds, which has been used in prior work [14, 47]. The video is

partitioned into 4-second chunks with bitrates of {300, 750, 1200,

1850, 2850, 4300} kbps.

4.1.2 QoE Metrics. The QoE metric can be expressed as:

QoE =
∑
n

q(Rn ) − µ
∑
n

Tn −
∑
n
|q(Rn+1) − q(Rn )| (8)

where Rn represents the bitrate of chunk n. Tn is the rebuffering

time of chunk n. q(·) is the utilization function as defined in Table 2.

To better illustrate the individual performance of different parts



Table 2: QoE metrics considered in our evaluation [47, 64].

QoEl in q(R) = R µ=4.3
QoEloд q(R) = log(R/Rmin ) µ=2.66
QoEhd q(R) = {0.3:1, 0.75:2, 1.2:3, 1.85:12, 2.85:15, 4.3:20} µ=8
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Figure 5: The statistics of the throughput of network traces.

of QoE, we consider three choices of q(Rn ) in prior work [47, 56,

65]. Three terms in Equation 8 respectively refer to video quality,

rebuffer penalty and smoothness penalty.

4.1.3 Network Traces. As for network traces, to make a fair com-

parison, we adopt the traces used in the evaluation of previous

work [14, 47, 65]. We use 460 traces from Norway’s 3G HSDPA [51],

264 traces from US FCC broadband [10] compiled by [47], and 428

traces from Oboe [14] to evaluate PiTree. These three sets of traces
are statistically different as presented in Figure 5.

We apply PiTree over the following state-of-the-art ABR algo-

rithms
1
:

• RobustMPC [65] employs Mixed Integer Linear Programming

to calculate optimal bitrate over future chunks with buffer occu-

pancy and network throughput.

• Pensieve [47] models the bitrate selection process with Rein-

forcement Learning (RL) and makes predictions based on 25

states with a neural network.

• HotDASH [53] extends Pensieve and uses two cascaded neural

networks to make ABR decisions.

4.1.4 Testbed Setup. We use the virtual player in [47] for decision

tree training. We migrate the decision tree generated by PiTree into
dash.js [11] and compress JavaScript codes with the UglifyJS plu-
gin in the Grunt.js [12]. The video server and emulationmethod [48]

are the same with those in Pensieve [47]. We leave the large-scale

real-world test for future work. Due to the difference of the com-

plexity of ABR algorithms, we set the number of leaf nodes to 500,

100 and 100 for RobustMPC, Pensieve and HotDASH. We discuss

this setting in §4.4.3.

4.2 Performance
We demonstrate the performance maintenance of PiTree by compar-

ing the QoE of original algorithms and decision trees convertedwith

PiTree. We thus measure the ratio of QoE by the PiTree-generated
decision trees and the original algorithms. A QoE ratio less than

100% indicates a performance degradation. We first measure the

average QoE normalized by the number of chunks and average QoE

ratio across three types of QoE metrics and three sets of traces, as

shown in Figure 6. The average performance degradation is less

1
RobustMPC and Pensieve from https://github.com/hongzimao/pensieve, HotDASH

from https://github.com/SatadalSengupta/hotdash.
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Figure 6: Overall average results of PiTree. {R, P, H} refer to
{RobustMPC, Pensieve, HotDASH} respectively.
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Figure 7: QoE ratio of PiTree on different ABR algorithms,
network traces and QoE metrics.

than 3% for three algorithms (average QoE ratio of Pensieve is 97%

as presented in Figure 6(b)), which is negligible compared to the

performance improvement achieved by new algorithms (17% for

HotDASH over Pensieve, and 30% for Pensieve over RobustMPC).

Detailed results on different traces and different QoE metrics are

presented in Figure 7. Most of the median performance degradation

is less than 5%, which demonstrates that PiTree could faithfully

convert the sophisticated algorithm across a wide range of scenar-

ios. PiTree can also accurately imitate the behavior of original ABR

algorithms at individual bitrate level. The individual prediction

accuracy for RobustMPC, Pensieve and HotDASH are 80%, 90% and

82% respectively, more details of which are presented in Figure 11

in §4.4.3.

4.3 Overhead
Wemeasure the overhead of implementing PiTree into video players
across several metrics with different numbers of leaf nodes. As

decision trees converted from different algorithms have similar

overhead, we present the average results of decision trees with

three sets of traces and three ABR algorithms.

4.3.1 Page Size. We first measure the HTML page size and present

the results in Figure 8(a). We also implement original ABR algo-

rithms into video players and demonstrate their impracticality. dash
represents the rate-based algorithm adopted in dash.js. Compared

to the original dash-based page, Pensieve increases the page size
by 4.6× (from 381KB to 1750KB) with Tensorflow.js [54]. This

drastically increases the page load time by 10s when the goodput is

1200kbps. Users have to wait for a long time before the video can

https://github.com/hongzimao/pensieve
https://github.com/SatadalSengupta/hotdash
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Figure 8: Overhead of PiTree. N100: the decision treewith 100
leaf nodes. {R, P, H}: {RobustMPC, Pensieve, HotDASH}.

play, which might drive some of them to leave the page [41]. In

contrast, results show that even with 2000 leaf nodes (N2k), the page
size of PiTree is only increased by 13%. Moreover, our experiments

in §4.2 demonstrate that decision trees with 100 leaf nodes are faith-

ful enough for Pensieve and HotDASH, which only increases the

page size by about 0.6%. This only introduces a negligible additional

page load time by 0.01s.

4.3.2 Decision Latency. We further measure the decision latency

within JavaScript of PiTree-based ABR decision trees and the orig-

inal rate-based ABR algorithm in dash.js. Since the decision-

making latency is highly related to underlying devices, we measure

the latency on two testbeds: a PC with an Intel Core i7-8550 CPU,

and a mobile phone with a Qualcomm Snapdragon 821 CPU. As

shown in Figure 8(b), the decision latency of original algorithms

is found to be 1s, 3-4 magnitudes larger than that of PiTree-based
algorithms. Such a high decision latency will not only impair the

QoE due to the out-of-dated information [65], but will also stall the

video player when the video chunk length is less than the average

decision latency (e.g., 2s in [38]). In contrast, the average decision-

making latency of PiTree is significantly reduced to less than 1ms,

which is at the same magnitude with the default ABR algorithm in

dash.js.

4.3.3 Memory Utilization. We finally measure the average run-

time JavaScript heap memory with the memory API in Chrome

DevTools [1]. We implement a fixed bitrate algorithm as a base-

line, which constantly selects the lowest bitrate, to eliminate the

influence from other functions in the video player. As shown in
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Figure 9: Estimated operating expenses of ABR servers.
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Figure 10: Offline training time breakdown.

Figure 8(c), the average runtime memory is increased by less than

7% for all decision trees, which is negligible compared to other

components in the video player.

4.4 Deployment Efforts
4.4.1 Operating Expenses. We further compare the OPEX of PiTree
with other server-based ABR solutions. With the ABR server ca-

pacity measured in Figure 1(b), we calculate the OPEX per hour for

three ABR algorithms based on the server operating expenses. For

example, a 4-core Amazon EC2 instance with similar configurations

costs $0.188 per hour (t2.xlarge) [3, 40]. As shown in Figure 9,

for large content providers such as YouTube [8], with more than

one billion hours of video clips being watched daily on average [9],

the average concurrent viewer is approximately
1Bh
24h = 40M . Thus

they need to pay up to millions of dollars monthly for remote

ABR servers. Although the estimation here is an extreme case in

the real world, it is indisputable that reducing considerable online

servers will save OPEX for content providers. This cost makes the

server-based ABR solutions not scalable. In contrast, since PiTree-
based solutions are directly implemented into video clients, they

do not introduce additional OPEX and thus prevent revenue loss

for large-scale content providers.

4.4.2 Offline Training Cost. We break down the training time for

each algorithm for 500 iterations and present the results in Fig-

ure 10 according to steps in Algorithm 1. The time of TrainDT and

VirtualPlay does not vary much with respect to ABR algorithms.

Note that the predictions in line 5 in Algorithm 1 are accelerated by

32 parallel virtual CPU cores, which again demonstrates the com-

plexity of state-of-the-art ABR algorithms. The total training time

is up to 2.3 hours for three ABR algorithms, which is acceptable

since it needs running offline only once for initial decision tree

generation at the design phase.

4.4.3 Sensitivity Analysis. To test the sensitivity of the number of

leaf nodes in PiTree, we vary the number of leaf nodes from 100 to

2000 and measure the single prediction accuracy for the three ABR

algorithms evaluated before. Results are presented in Figure 11. For

RobustMPC, as shown in Figure 11(a), the accuracy of decision trees
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Figure 11: Single prediction accuracy of PiTree at different iterations. The accuracy goes down because (S,A) lacks samples in
the first several iterations and decision trees are overfitted.
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Figure 12: NormalizedQoEl in of PiTree-over-Pensieve when
test traces are statistically different from training traces.

with less than 500 leaf nodes converge to different levels since with

better expressiveness, the performance will be improved. However,

the improvement is not unlimited. As long as the number of leaf

nodes is high enough to express the policy of RobustMPC, more

nodes will lead to overfitting and thus a slower convergence (e.g.,
N1k and N2k in Figure 11(a)). Decision trees with different num-

bers of leaf nodes for Pensieve and HotDASH (Figure 11(b), 11(c))

demonstrate the similar relationship. The converged performance

of PiTree is hardly affected as long as the number of leaf nodes is

above a certain level, indicating a strong robustness towards the

number of leaf nodes.

4.4.4 Generalization of PiTree. In previous experiments, we ran-

domly split a set of traces into training (80%) and test (20%) set for

evaluation. We want to further investigate the generalization ability

of PiTree when the statistical features of the training and test set

are different. We measure the normalized QoEl in of the decision

trees converted from Pensieve but trained with different traces in

different test traces. As shown in Figure 12, even decision trees

are trained with different traces, they perform almost the same

during testing. We also measure the ratio of the normalized QoE

over that when the training and test environments are the same, the

median of which in all experiments in Figure 12 is greater than 97%.

Performance over Oboe on some certain traces are degraded a little

since the traffic distribution of Oboe is quite different from those of

the other two sets of traces (Figure 5). Experiment results for other

ABR algorithms and QoE metrics are similar (not presented), which

demonstrate the strong generalization ability of PiTree. Moreover,

advanced online parameter tuning techniques [14, 26] could be

employed to further enhance the generalization ability. We leave

the generalization ability over large-scale real-world deployments

as our future work.

5 RELATEDWORK
ABR Algorithms. As summarized in Table 1, recent research ef-

forts include buffer-based methods [34, 55, 56], rate-based meth-

ods [38, 44, 61], conventional hybrid methods [25, 60, 63, 65], and

ML-based hybrid methods [32, 45, 47, 53]. All of them could be con-

verted into decision trees with PiTree if they are too heavyweight

for large-scale real world implementations in practice. There are

also recent efforts on the co-design of video server, network proto-

col and video player in ABR systems [18, 19, 37], and also online

parameter finetuning mechanisms of ABR algorithms [14, 26]. Both

of them are orthogonal to PiTree and could be integrated together

for further improvements.

Complex Algorithm Deployment. There are also some recent

work on how to deploy sophisticated models in practice, most of

which focus on heavyweight neural networks. Proposed methods

include introducing new acceleration devices [23, 42, 64], or com-

pressing neural networks [21, 22, 43]. However, most of them are

expensive, case-specific and difficult to be generalized to othermeth-

ods. In contrast, as PiTree does not require any information from

the ABR algorithms, it could be applied to any sophisticated algo-

rithms. Moreover, instead of introducing new expenses [23, 42, 64],

the online overhead and deployment efforts of PiTree are negligible
[§4.3, §4.4].

6 CONCLUSIONS
In this paper, we propose PiTree, a new framework to generally

make the implementation of sophisticated ABR algorithms prac-

tical in the real world. PiTree faithfully converts different ABR

algorithms into decision trees with the help of offline imitation

learning with theoretically bounded average optimization loss.

Evaluations over three representative ABR algorithms show that

PiTree could achieve high performance, low runtime overhead at

the same time with negligible additional deployment efforts. We

believe that PiTree could accelerate the design of new ABR algo-

rithms.
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