
Prophet: Real-timeQueue Length Inference in
Programmable Switches

Shuhe Wang†, Jun Bi#, Chen Sun†, Yu Zhou†

†#Institute for Network Sciences and Cyberspace, Tsinghua University
†#Beijing National Research Center for Information Science and Technology (BNRist)
†{wangshuh18,c-sun14,y-zhou16}@mails.tsinghua.edu.cn, #junbi@tsinghua.edu.cn

CCS CONCEPTS

•Networks→Programmable networks;Networkmon-

itoring;

KEYWORDS

Programmable Switches; PISA; Queue Modeling; Flow

Scheduling

ACM Reference format:

Shuhe Wang, Jun Bi, Chen Sun, et al.. 2019. Prophet: Real-time

Queue Length Inference in Programmable Switches. In Proceedings

of SOSR ’19: Symposium on SDN Research, San Jose, CA, USA, April

3–4, 2019 (SOSR ’19), 2 pages.

https://doi.org/10.1145/3314148.3318050

1 INTRODUCTION

Programmable switches enable the implementation of

many complex network functions directly in the data plane.

Protocol Independent Switch Architecture (PISA) is a state-

of-the-art architecture for programmable switches [1]. After

entering a PISA switch, packets first go through an ingress

pipeline, then enter the traffic manager that maintains multi-

ple queues, and are finally processed by an egress pipeline.

However, there exists an intrinsic constraint in PISA. The

traffic manager generates metadatas of queue lengths which

are only accessible in egress, while the ingress has no visi-

bility in the queue status. This prevents PISA switches from

supporting many advanced network functions. For instance,

DRILL [3] employs per-packet load balancing by deciding

which queue a packet should enter based on the lengths

of candidate queues. The decision has to happen in ingress

before packet queuing, which cannot be supported in PISA.

This poster is supported by the National Key R&D Program of

China (No.2017YFB0801701), the National Science Foundation of China

(No.61872426). Jun Bi is the corresponding author.

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

SOSR ’19, April 3–4, 2019, San Jose, CA, USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6710-3/19/04. . . $15.00

https://doi.org/10.1145/3314148.3318050

Figure 1: Prophet workflow

To address the above constraint, a straightforward ap-

proach is to enable ingress to send periodic probing pack-

ets to all queues of all ports and deliver the queue informa-

tion from egress through the recirculation capability of PISA

switches. However, for real-time applications such as DRILL,

probing must finish within very short (a few microseconds)

intervals. This introduces massive additional packets to be

queued, which could cause inflated latency and potential

packet drops when queues are already heavily occupied. A

potential enhancement is to directly clone original traffic in

egress and recirculate them to ingress with the queue infor-

mation. Doing so could avoid generating additional packets

that compete for the queues. Nevertheless, it takes time of

microseconds for packets to recirculate, while packet pro-

cessing rates are usually at a nanosecond timescale, resulting

in ingress receiving untimely and inaccurate queue lengths.

In this poster, we present Prophet to enable real-time and

accurate queue length inference in ingress in PISA-based pro-

grammable switches. As ingress knows the target queue of

every single packet, instead of waiting for egress to back-

propagate queue information to ingress, Prophet actively

estimates queue lengths in ingress. Prophet first models

FIFO queue behaviour by recomputing the length of a queue

whenever a new packet enters based on port bandwidth.

Second, Prophet addresses the implementation challenge of

supporting multiplication function through approximation.

Finally, to eliminate the inference inaccuracy of approxima-

tion, Prophet enables egress to periodically back-propagate

accurate queue length to ingress. Our evaluation shows that

Prophet can maintain accurate queue lengths in egress and

could effectively support functions such as DRILL.

SOSR Demos and Posters ’19

San Jose, CA, USA,April 3–4 Shuhe Wang, et al.

2 PROPHET DESIGN
We illustrate Prophet design in Figure 1. The key idea of

Prophet is inferring queue lengths in ingress. Sowemaintain

a register array in ingress to hold inferred queue lengths.

Next we introduce Prophet in detail.

Queue behaviormodeling. Prophetmodels queue behaviour

in ingress. By default, all queues in switches are FIFO. There-

fore, when a new packet is inserted into a queue, its length

increases. On the other hand, it decreases when dequeuing

packets. Despite ingress does not know the exact time of

packet dequeuing, we could estimate this according to inter-

face throughput. For simplicity, we assume that an interface

fetches packets from all of its queues in a round-robin fashion.

Therefore, we could estimate the queue length decreasing

ratio. For applications like DRILL, queue length information

is only needed on packet arrival. Therefore, we trigger queue

length calcuation when new packets arrives in ingress. We

use register to record the timestamps when packets arrive.

The duration between two adjacent packets is calculated as

Δt = tcurrent − tlast . The queue length decreasing rate is

denoted as C . Therefore, traffic of ΔL = CΔt is dequeued.
Note that if ΔL is above the current queue length, then the

queue should be empty, and the length is directly set to zero.

Approximating multiplication in PISA switches. Mul-

tiplication is not supported in the switch programming lan-

guage such as P4. To address this challenge, we propose to

approximate multiplication with shifts and additions. We

observe that shift operations are supported and are equal

to multiplication with powers of 2. Therefore, we approx-

imate C with 2k1 + 2k2 + ... + 2kt ,ki ∈ Z, i = 1, 2, ..., t .
Thus, ΔL ≈ 2k1Δt + 2k2Δt + ... + 2ktΔt . If ki > 0, then

2kiΔt = Δt << ki , otherwise 2kiΔt = Δt >> (−ki). This
way, the multiplication can be substituted with (t − 1) shift

operations and (t − 1) additions with reasonable accuracy.

Back-propagating queue lengths for high accuracy. Al-

though the approximation is accurate in a short time, the bias

still exists and can be accumulated in the long run, which

significantly compromises inference accuracy. AssumeC has

q bits and the approximation by far covers its highest r bits. If
r < q, the bias cannot be neglected after a long time ofO(2q).
To address this challenge, we propose to use recirculation

to help refresh the values of array periodically and improve

accuracy. Egress samples packets with a configurable rate,

clones sampled packets and recirculates the copies to ingress

with the new queue lengths to replace the stale ones.

3 EVALUATION

Wehave simulated Tofino switch and implemented Prophet
and Prophet supported DRILL application in it. We use real

world traces from CAIDA [2] as test traffic, and vary its

rate to create different incast ratios. We evaluate Prophet
to demonstrate that (1) Prophet could infer queue lengths

0.00
0.25
0.50
0.75
1.00

1.0 1.5 2.0
Incast Ratio

A
cc

ur
ac

y

Infer PROPHET Recirc

(a) Inference accuracy

30
40
50
60
70

DRILL ECMPPROPHET

Q
ue

ue
 L

en
gt

hs

(b) Effectiveness to support

DRILL

Figure 2: Prophet inference accuracy & effectiveness

with high accuracy, and (2) Prophet could effectively sup-

port applications such as DRILL that rely on queue length

information in the ingress pipeline.

Prophet accuracy. We compare Prophet with two naive

solutions: Infer that only relies on queue length inference

in ingress, and Recirc that only uses recirculation to deliver

queue length to ingress. Under different incast ratios, we

measure the inferred queue lengths produced by the three

solutions, and compare themwith the accurate queue lengths.

The evaluation results are presented in Figure 2(a). We ob-

serve that Prophet could produce accurate queue lengths

in >90% situations. In comparison, Infer could be inaccurate

in up to 30% cases, while Recirc is inaccurate in up to 60%

situations.

Effectiveness of Prophet to support DRILL. Next we

demonstrate that Prophet could effectively support appli-

cations such as DRILL that rely on queue information in

ingress. We configure the incast ratio as 1.2 to create a light

congestion situation and see whether DRILL could effec-

tively balance the load based on the queue lengths provided

by Prophet. We compare three approaches including DRILL

based on accurate queue length, DRILL based on Prophet,
and simple ECMP. As shown in Figure 2(b), The average

queue lengths of Prophet based DRILL is close to ideal

DRILL and is shorter than naive ECMP, and Prophet has a
much smaller variation compared with naive ECMP.

4 FUTUREWORK

As our future work, we will extend Prophet to support ad-
vanced queuing methods such as multi-level feedback queue,

PIFO, etc. We will also implement Prophet in other pro-

grammable switches such as Cavium’s Xpliant, Intel’s Flex-

pipe, Cisco’s Doppler, Broadcom’s Trident 3, etc. to further

prove its feasibility and efficiency.

REFERENCES
[1] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McK-

eown, Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013. For-

warding metamorphosis: Fast programmable match-action processing

in hardware for SDN. In SIGCOMM.

[2] CAIDA. 2016. The CAIDA Anonymized Internet Traces 2016 Dataset.

(2016). https://www.caida.org/data/passive/passive_2016_dataset.xml

[3] Soudeh Ghorbani, Zibin Yang, P Godfrey, Yashar Ganjali, and Amin

Firoozshahian. 2017. DRILL: Micro Load Balancing for Low-latency

Data Center Networks. In SIGCOMM.

