
3294 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

SDPA: Toward a Stateful Data Plane in
Software-Defined Networking

Chen Sun, Jun Bi, Senior Member, IEEE, ACM, Haoxian Chen, Hongxin Hu, Member, IEEE, ACM,
Zhilong Zheng, Shuyong Zhu, and Chenghui Wu

Abstract— As the prevailing technique of software-defined
networking (SDN), open flow introduces significant programma-
bility, granularity, and flexibility for many network applications
to effectively manage and process network flows. However, open
flow only provides a simple “match-action” paradigm and lacks
the functionality of stateful forwarding for the SDN data plane,
which limits its ability to support advanced network applications.
Heavily relying on SDN controllers for all state maintenance
incurs both scalability and performance issues. In this paper,
we propose a novel stateful data plane architecture (SDPA) for the
SDN data plane. A co-processing unit, forwarding processor (FP),
is designed for SDN switches to manage state information through
new instructions and state tables. We design and implement
an extended open flow protocol to support the communication
between the controller and FP. To demonstrate the practicality
and feasibility of our approach, we implement both software
and hardware prototypes of SDPA switches, and develop a
sample network function chain with stateful firewall, domain
name system (DNS) reflection defense, and heavy hitter detection
applications in one SDPA-based switch. Experimental results
show that the SDPA architecture can effectively improve the
forwarding efficiency with manageable processing overhead for
those applications that need stateful forwarding in SDN-based
networks.

Index Terms— SDN, stateful forwarding, data plane.

I. INTRODUCTION

SOFTWARE Defined Networking (SDN) is an emerging
network architecture that provides unprecedented pro-

grammability, automation, and network control by decoupling
the control plane and the data plane. In SDN architecture,

Manuscript received December 24, 2015; revised July 28, 2016,
October 25, 2016, February 17, 2017, and May 24, 2017; accepted
July 5, 2017; approved by IEEE/ACM TRANSACTIONS ON NETWORKING
Editor Y. Ganjali. Date of publication August 1, 2017; date of current
version December 15, 2017. This work was supported in part by the
National Key R&D Program of China under Grant 2017YFB0801701 and in
part by the National Science Foundation of China under Grant 61472213.
(Corresponding author: Jun Bi.)

C. Sun, H. Chen, Z. Zheng, S. Zhu, and C. Wu are with the
Institute for Network Sciences and Cyberspace, Tsinghua University,
also with the Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China, and the Tsinghua National
Laboratory for Information Science and Technology, Beijing 100084, China
(e-mail: c-sun14@mails.tsinghua.edu.cn; chenhx12@mails.tsinghua.edu.cn;
zhengzl15@mails.tsinghua.edu.cn; zhu-sy11@mails.tsinghua.edu.cn;
wuch13@mails.tsinghua.edu.cn).

J. Bi is with the Institute for Network Sciences and Cyberspace, Tsinghua
University, Beijing 100084, China, also with the Department of Computer
Science and Technology, Tsinghua University, Beijing 100084, China, also
with the Tsinghua National Laboratory for Information Science and Tech-
nology, Tsinghua University, Beijing 100084, China, and also with CERNET
Network Center, Beijing 100084, China (e-mail: junbi@tsinghua.edu.cn).

H. Hu is with the School of Computing, Clemson University, Clemson,
SC 29634 USA (e-mail: hongxih@clemson.edu).

Digital Object Identifier 10.1109/TNET.2017.2726550

network intelligence and state are logically centralized, and
the underlying network infrastructure is abstracted for network
applications. As a representative technique of SDN, Open-
Flow [20] introduces a “match-action” paradigm for the SDN
data plane where programmers could specify a flow through a
header matching rule along with processing actions applied to
matched packets. OpenFlow switches remain simple and are
only in charge of forwarding packets according to flow tables
issued by the controller, while all the intelligence is placed at
the controller side.

In traditional networks, network functions, such as fire-
walls, WAN optimizers, and load-balancers, are generally
implemented by on-path or off-path proprietary appli-
ances or middleboxes. However, middleboxes usually lack
a general programming interface, and their versatility and
flexibility are also poor [24], [25]. A primary goal of SDN is
to enable a controller to run various applications and manage
the entire network by configuring packet-handling mechanisms
in underlying devices. Although OpenFlow significantly helps
manage and process network flows and is effective for many
applications running on top of the controller, OpenFlow’s sim-
ple “match-action” abstraction also introduces great challenges
in building key network services, such as stateful firewalls,
heavy hitter detection, etc., which require advanced packet
handling.

On the one hand, OpenFlow focuses solely on L2/L3 net-
work transport. Its data plane provides limited support for
stateful packet processing and is unable to monitor flow states
without the involvement of the controller [27]. OpenFlow
may impliedly support partial stateful forwarding in the data
plane through instructions and counters, but it still lacks the
capability to actively maintain state information in the data
plane. For instance, a heavy hitter detection application needs
to alert the system when a flow packet counter exceeds a
specific threshold. However, in OpenFlow, even if a flow
counter can be maintained in the data plane, the flow table
cannot react differently when the counter exceeds the thresh-
old. The controller has to pull the counter from switches
regularly. But a large pulling interval will result in untimely
reaction, while a small interval will consume more network
bandwidth. Besides, flow entries are aggregated and usually
unable to provide flow-level monitoring, which may not be
able to support applications like heavy hitter detection. Even
though the recent OpenFlow switch specification introduces
OpenFlow pipeline, which contains multiple flow tables, in the
data plane, the lack of state-relevant tables and primitives
preserves the incapability of supporting advanced stateful
network applications.

1063-6692 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

SUN et al.: SDPA: TOWARD A STATEFUL DATA PLANE IN SDN 3295

On the other hand, heavily relying on the controller to
maintain all packet states could give rise to both scalability
and performance issues due to the associated processing delay
and the control channel bottleneck between the controller
and switches [18], [28]. In addition, OpenFlow targets fixed-
function switches that recognize a pre-determined set of header
fields and processes packets using a small set of predefined
actions. The header fields and actions cannot be extended
flexibly to meet diverse application requirements. The limited
expressivity of OpenFlow compromises the programmability
and capability of the SDN data plane [7], [9].

The limitation of the OpenFlow data plane has been recog-
nized by the research community. Some recent efforts have
been devoted to enhance the programmability of the SDN data
plane [9], [27]. Among them, P4 [9] is a typical language that
allows flexible definition of protocol header fields, parsers,
and tables. Although P4 could maintain information in the
data plane during runtime based on its register data structure,
it aims to enhance the data plane programmability. Therefore,
it proposes an abstraction for low-level general data plane
behaviors, without particular focus on the paradigm or abstrac-
tion for high-level stateful applications. Despite its strong pro-
grammability in the data plane, P4 could not support intuitive
programming of stateful applications. Furthermore, P4 lacks
corresponding control plane that can interact with data plane
applications to dynamically issue data plane configurations.

To address the above challenges, we introduce an innovative
Stateful Data Plane Architecture (SDPA) to enable intuitive
programming and high performance processing of stateful
applications in the SDN data plane. In contrast to the simple
“match-action” paradigm of OpenFlow, we propose a new
“match-state-action” paradigm for the SDN data plane. In this
paradigm, state information can be maintained in the data
plane without heavy involvement of controllers. Based on the
SDPA paradigm, we propose a generic stateful switch design
for both software and hardware. A variety of complicated
stateful applications, such as stateful firewalls and DNS reflec-
tion defense, can be implemented in this platform. The rules
in the data plane devices can be configured by the controller
and efficiently enforced by specially optimized data structures
and stateful processing modules, which can especially support
network function chains on software or hardware.

The paper makes the following contributions:
• We propose a novel stateful data plane architecture,

SDPA, which supports a new “match-state-action” par-
adigm in the SDN data plane. This architecture has the
generality to support various network applications that
need to process state information in the data plane.

• We design and implement an extended OpenFlow proto-
col to support SDPA. Through this protocol, the SDN
controller can communicate with the state processing
module FP, short for Forwarding Processor, in switches
to manipulate the state information in the data plane.

• We implement both software and hardware prototypes
of SDPA switches and develop a sample network func-
tion chain composed of stateful firewall, DNS reflec-
tion defense, and heavy hitter detection applications in
SDPA-based software and hardware switches.

• We evaluate our approach with extensive experiments.
Results show that the SDPA can tremendously reduce
the forwarding latency of stateful applications with man-
ageable processing overhead in SDN-based networks.

The rest of this paper is organized as follows. We overview
the concept of state and SDPA paradigm in Section II. SDPA
design is articulated in Section III. We present the implementa-
tion in Section IV, and evaluations in Section V. We summarize
related works in Section VI. We present some discussions
in Section VII, and conclude this paper in Section VIII.

II. MOTIVATION AND SDPA PARADIGM

A. Motivation

In this section, we first introduce the stateful firewall
application, based on which we elaborate our motivation of
maintaining state in the SDN data plane.

The term “state” in networking is defined as historical
information that needs to be stored as input for processing of
future packets in the same flow. A stateful firewall is a type of
firewall that keeps track of the state of network connections
and determines packet handling according to the associated
state information [23]. The states of TCP connections and
UDP pseudo connections are maintained in a state table, where
an entry is created when a connection is detected. Then, when
a packet comes in, the firewall matches the packet to the state
table to determine whether it belongs to a legitimate session.
If the packet obeys state transition policies of TCP/UDP
protocol, it is allowed to pass through the firewall.

Based on the stateful firewall use case, we summarize the
following motivations to maintain state in the SDN data plane.
Firstly, some applications need to record the state information
of each packet for advanced handling. If the state is maintained
in the controller, there will be considerable Packet-Ins sent
to the controller. The forwarding efficiency would be sig-
nificantly affected because it incurs extra forwarding latency
and the bottleneck between the controller and the switches.
Moreover, relying on the controller to process state would
exert heavy load on the controller and degrade its efficiency.
Secondly, existing SDN techniques provide limited support
for stateful processing in the data plane. OpenFlow’s simple
“match-action” paradigm is almost stateless [27]. The data
plane cannot maintain state and react differently when the
state changes. Therefore, it is challenging to fully support
stateful applications in SDN. Thirdly, although some advanced
applications can be implemented in middleboxes, middleboxes
usually lack a general programming interface [14], [24].
A network filled with various middleboxes is hard to manage.
Consequently, it is critical to design a systematic mechanism
for supporting stateful processing in the SDN data plane.

B. SDPA Paradigm

Although OpenFlow’s “match-action” paradigm is simple
and capable enough to support many applications, it pro-
vides limited support for stateful processing due to the lack
of state-related modules in the pipeline of OpenFlow data
plane. In essence, the limited “match-action” paradigm seems

3296 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

Fig. 1. SDPA paradigm.

to be an involuntary outcome of being amenable to high-
performance and low-cost implementations, without consid-
ering a rich set of complicated network functions (such as
stateful firewalls, load balancing, FTP monitoring, heavy hitter
detection, etc.).

We propose a new “match-state-action” paradigm for the
SDN data plane as shown in Fig. 1. In this paradigm, we add
state fields to keep the state of flows, and extend actions to
manipulate state fields. It is a general paradigm and can be
implemented through a diversity of software and hardware
platforms, such as CPU, NPU, NetFPGA, ASIC, etc. When
implementing stateful applications, such as stateful firewalls,
input packets are processed according to related state infor-
mation. Then, the state information is updated according to
incoming packets or internal/external events. With this new
paradigm, state processing can be programmed and the state
information can be maintained in the SDN data plane without
conveying all packets to the controller for state maintaining.

In stateful SDN data plane, the inputs can be divided into
two categories: incoming packets and states of flows. They are
under the control of the transfer function. The outputs include
both packets and states. We define S as a nonempty finite set
of states in the SDN data plane. Σ is defined as the input
packet set of SDN data plane. We define A as a collection
of actions for the data plane, including forward, modify, drop,
etc. Δ is defined as a transfer matrix issued by the controller.
s0 is defined as the start state. It is the state when a switch
has not processed any input packets. F is defined as the set
of final states. F is a subset of S. Then the data plane can be
abstracted as a five-tuple model (S, Σ, Δ, s0, F).

In the paradigm of traditional SDN data plane, the transition
matrix can be expressed as formula 1. In this paradigm,
the input of this transition matrix Δ is the input packet set
Σ alone and the output is simply the powerset of Σ, which
represents both unicast and multicast traffic.

Δ : Σ A→ P(Σ) (1)

In SDPA paradigm, the input packet set Σ and the state
set S in the data plane convert to the output packet set P(Σ)
and state set S. The transition matrix can be expressed as:

Δ : Σ× S
A→ P(Σ)× S (2)

In this new paradigm, state information of flows is main-
tained in the data plane. Stateful processing can be supported
with higher performance. Detailed design to support this new
paradigm will be elaborated in the following section.

III. DESIGN

In the OpenFlow architecture, packets are simply forwarded
based on flow tables in switches. Through adding intelligence

to switches, we can maintain state information in the data
plane in SDPA. Concretely, we design a co-processing
unit in SDN switches named Forwarding Processor (FP),
which can be implemented using CPU, NPU, NetFPGA, etc.
To reserve the compatibility with current OpenFlow architec-
ture, we design extended OpenFlow instructions to direct pack-
ets between the flow table and FP. FP realizes more complex
processing of flows according to previously introduced state
transition matrixes, or state machines of stateful applications.

As depicted in Fig. 2, we design a State Transition Table for
FP to describe the state machine of each stateful application.
We add State Tables in FP to maintain the state of flows
and Action Tables to record actions under different states.
Since different applications vary in state transition policies,
each application possesses its own table set. For initialization,
the controller issues the entire state transition table and formats
of state table and action table to the data plane. During
runtime, the first packet of a flow is sent to the controller to
determine which applications should process this flow. Then,
a flow entry is issued to direct the flow into FP. At the same
time, the controller sends corresponding stateful table entries
to FP. The state of this flow is maintained in the data plane. The
controller can also issue table entries proactively before flow
arrival. We will introduce each module and elaborate SDPA’s
support for stateful applications in this section.

A. Forwarding Processor

FP maintains the state of flows and processes packets
according to the current state and state transition policies.
We add a GOTO_ST(n) instruction in the data plane, which is
used to direct packets from the OpenFlow pipeline to the state
table n in FP. After FP processes the packet, it sends the packet
back to the source flow table in the OpenFlow pipeline. In sit-
uations where packets are requested to be processed by several
applications sequentially inside one switch, the controller can
issue several GOTO_ST instructions to direct packets to the
corresponding applications respectively.

We design actions for stateful processing in FP. These
actions can be flexibly extended to meet application
requirements. The actions can be divided into following cate-
gories: Control actions: they are used to direct packets between
the flow tables and FP, such as GOTO_ST. Processing actions:
they are used for FP to process flows, including SET_FIELD,
OUTPUT, DROP, etc. State operating actions: they are used
to operate the state table, such as STATE_UPDATE. Arith-
metic actions: they are used to perform arithmetic operations.
Logical actions: they are used to perform logical operations.

B. State Manipulation

In order to maintain state information in the SDN data
plane, we design three kinds of tables: State Table (ST), State
Transition Table (STT), and Action Table (AT). Since different
applications may need to maintain different state information,
each application may have a unique corresponding table set.

1) State Table (ST): State tables are used to maintain states
in the SDN data plane. STs can be initiated by the controller
dynamically. When an application requires stateful processing,

SUN et al.: SDPA: TOWARD A STATEFUL DATA PLANE IN SDN 3297

Fig. 2. SDPA architecture and table structures.

the controller sends a message to FP to initiate its ST. The
message contains information about all fields of the ST.

The state is maintained in the data plane and updated
according to incoming packets or internal/external events. The
state information can be uploaded to the controller, so that
the controller can keep the global state information of the
network. The controller can decide how often switches send
the update messages according to application requirements.
For example, switches may be configured to inform the
controller periodically instead of one message for each change.

Fig. 2 shows the structure of state tables. The “Match
Fields” domain in a state table refers to the match fields
of packets. It is flexible and extensible. For example, it can
store connections possibly represented by both source and
destination addresses. In accordance with traditional Open-
Flow match fields, we also include an equally long match
field mask domain in state tables. The “State” domain in a
state table is used to explicitly record the state information
of flows with no mask. The realization of state tables can be
based on TCAM or SRAM. The controller may actively add,
modify, or remove state table entries by sending state operating
messages.

2) State Transition Table (STT): We design a state transition
table to support the specification of state update policies with
respect to a specific connection-oriented protocol. A state
transition table specifies the transition policies that indicate
how the states transfer according to the protocol. A state
transition table contains three different domains, including
State, Event, Next State, as shown in Fig. 2. The STT is issued
to the FP by the controller only once during initialization.

The State domain possesses an equally long mask domain,
enabling a wildcard match on the current state for different
events. The mask is essential for advanced stateful applica-
tions. For instance, in the heavy hitter detection, the current
counter state should be compared against a threshold, no mat-
ter what the counter value is. Without the mask, there will be
innumerable table entries.

The Event domain is the trigger of state transitions. For
instance, the TCP flag carried in each packet triggers the
TCP state transition. We standardize events into Param1 +
Comparison_Operator + Param2 format. FP can fetch
Param1 and Param2 from packets, tables, the switch, and
the controller. The two params can come from the same source,

such as Packet Source IP Address and Packet Destination
IP Address from packet headers. The Comparison operator
is restricted to <, >, =, ≥ or ≤. Events may vary in
different applications. We judge that an event is detected if
this (in)equality is satisfied, which can trigger a state transition
according to relevant STT entry. For instance, if the TCP flag
of a packet = FIN, the state of this connection will be triggered
from ESTABLISH to CLOSING.

The Next State domain can be directly and explicitly
assigned or calculated through an arithmetic or logical oper-
ation. We define the Next State domain as type+parameter.
Currently we support two types of Next State domain, includ-
ing DIRECT_ASSIGN, in which case the Next State domain is
directly assigned by the controller, and ADD_ONE, in which
case the Next State field will be the result of State+1.

3) Action Table (AT): The action table (AT) is used to
record the actions under different states. The structure of AT is
shown in Fig. 2. “Match Fields” and “State” domains are the
same as the domains in ST. The “Actions” domains describe
the corresponding actions. We classify the functions of actions
into several categories as discussed above. An action is defined
in ActionType + Parameter form. Actions can be flexibly
extended as long as we assign their execution methods and
necessary parameters in both the control and data plane.

C. SDPA’s Support for Stateful Applications

Many network applications can be abstracted into state
machines defined over a flow or an aggregation of flows. When
a packet enters FP, it first looks up the ST for the current state.
Using the current state and event (if any), the FP will look up
the STT and find or calculate a new state. Then the packet
and the new state will be sent into the AT to be processed
accordingly, while the new state will be updated into the State
Table. Finally, the packet will be sent back to the OpenFlow
pipeline for further processing.

We exemplify some stateful applications in TABLE I.
We classify the abstraction of stateful applications into two
types: finite state machine and infinite state machine.

1) Finite State Machine: Some stateful applications monitor
states that can be abstracted into finite state machines, such
as the TCP connection state. Let us consider the case of
stateful firewalls that monitor flow TCP states. The states of

3298 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

TABLE I

OVERHEAD OF TRADITIONAL IMPLEMENTATION AND NEW SDPA ARCHITECTURE FOR STATEFUL APPLICATIONS

Fig. 3. Table design for stateful firewall.

TCP connection include SYN, SYN_ACK, ESTABLISHED,
FIN_WAIT, CLOSING, and CLOSED. They are updated
according to the events specified by TCP flags in the headers
of TCP packets. Fig. 3 shows the ST, STT, and AT design for
the stateful firewall. The match field domain in ST and AT are
accompanied by masks and can be assigned as wildcards. The
Next State field in STT is directly and explicitly assigned by
the controller. When illicit packets come, they can be easily
identified through the invalid transitions and dropped.

Fig. 4. Table design for heavy hitter detection.

2) Infinite State Machine: Many network applications need
to count packets and react to different counter states, such as
heavy hitter detection, flow size monitoring, load balancing,
DDoS detection, etc. As for the case of heavy hitter detection,
to detect heavy hitters on a server or a subnet with traditional
SDN switches, the controller should install counting rules
on flow tables, then periodically query the counter statistics
from switches. This approach has two major limitations:
(1) Frequent queries from the controller bring severe overhead
to the controller. (2) Fetching all of the counter statistics from
switches consumes significant bandwidth between controller
and switches. Such limitations call for a mechanism to handle
state changes without frequent communications between the
switches and the controller. Now we introduce the support for
heavy hitter detection under the SDPA architecture.

The definition of the table fields is shown in Fig. 4. SDPA
uses the state field of ST to maintain flow counters. When
a packet arrives, we first extract certain fields that identify
the flow (e.g. source IP field for heavy hitter detection), then

SUN et al.: SDPA: TOWARD A STATEFUL DATA PLANE IN SDN 3299

lookup the counter statistics (state field) stored in the ST. The
STT is responsible for increasing the counter and checking
if the counter is larger than a threshold. We configure a
wildcard rule on the state field of STT, and the event
field to compare the current state with the threshold. Here,
the param1 of event is extracted from the state in ST, and the
param2 is assigned by the controller. If the counter is larger
than the threshold, the state of the flow will be updated as
OV ER_THRESHOLD, otherwise the counter is increased
by 1. The AT specifies actions depending on the new state
of the flow. If the new state is OV ER_THRESHOLD,
the switch sends the packet to the controller to inform the
detection of a heavy hitter. Otherwise, the packet is passed to
the next stages.

D. SDPA APIs

In order to support flexibly defined stateful functions,
we design north bound APIs on top of the controller and south
bound APIs between the controller and the FP. North bound
API is mainly used for operators to program applications,
which includes the determination of its processing logic and
table structures. South bound APIs are mainly used for com-
munication between the controller and the FP. The controller
initializes and modifies STs, STTs, and ATs in the FP through
the south bound APIs. We elaborate the API design as follows.

1) Key Components in SDPA APIs: The SDPA APIs include
the following key components. (1) Match field: A match field
definition describes the identification of each flow, such as the
five tuples of a TCP connection. Match fields can be flexibly
extended according to application requirements. We extend
current match fields in OpenFlow flow tables by assigning
the position and length of some new fields such as TCP
flags. (2) State: A state can be defined as an enumeration
variable expressed as: enum state ← {1, 2, 3, . . . , n},
since switches need not understand the meaning of each state.
The controller can construct the state table and the state
transition table using the enumeration values of a state and
send them to the switches. (3) Event: An event is the trigger
of state transition. For instance, the TCP flag carried in each
packet triggers the TCP state transition. (4) Action: We specify
actions to process packets under different states. Actions can
be flexibly extended as long as we assign their execution
methods and parameters in both the control and the data
planes. Actions supported in SDPA are listed in Section III-A.

2) South Bound API: The controller and FP communicate
with each other through the south bound APIs, an extension of
traditional OpenFlow protocol. The APIs are mainly used for
the operation of state information in the data plane, such as
initialization and modification of the table entries from the
controller to the FP, and status report from the FP to the
controller. The controller has full control over the FP.

With the above four key components, we design two
message types, Controller-to-FP messages and asynchronous
messages for SDPA south bound APIs. Controller-to-FP mes-
sages are initiated by the controller to manage or inspect
the state of the FP. They include (1) Table initialization
message: this function is used to initialize the tables inside

Fig. 5. SDN switch architecture supporting SDPA.

the FP. (2) Entry modification message: They are used to add,
modify, or remove state and action table entries. (3) Switch
configuration message: They are used for the controller to
configure data plane properties, such as state report inter-
val. Note that Controller-to-FP messages may or may not
require a response from the FP. Asynchronous messages are
initiated by the FP and used to update the controller of state
changes. They are sent without a controller soliciting them
from the FP. The FP sends asynchronous messages to the
controller to denote the state changes or other events, including
STATE_ENTRY_REMOVE and STATE_ENTRY_MODIFY.
STATE_ENTRY_REMOVE messages are triggered when the
state table entry is removed because of timeout or other
reasons. STATE_ENTRY_MODIFY messages are used for the
FP to notify the controller for the changes of state table entries.

3) North Bound API: The north bound APIs are provided
for operators to program stateful applications. They can be
divided into three types of functions. (1) Table formation func-
tion: Users call this interface to define table fields including
match fields, state, event and action. We provide a fixed set of
field choices in current implementation. However, this set can
be flexibly extended according to application requirements.
(2) Message construction function: This function is used
to build messages transmitted between the controller and
the switch, including table initialization or modification and
switch configuration. (3) Message transmission function: This
function is used to transmit messages to the switch.

E. SDN Switch Architecture Supporting SDPA

We design an SDN switch architecture supporting SDPA
as shown in Fig. 5. We add FP and State Table to SDN
switch architecture to maintain the state information in the
data plane. Besides, we add a policy module, which is used to
adjust the processing policies. This module includes the STT,
AT and state-relevant configurations discussed above. The new
architecture consists of the following functional modules:

• Network Interface: it is directly connected to the physical
layer and its main functions include receiving/sending

3300 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

packets and packet processing. It works in the physical
layer and the link layer.

• Forwarding Engine: it is responsible for determining the
packet forwarding paths. It parses the received packet
headers and looks up the flow tables to obtain the
destination ports for the forwarding operation.

• Forwarding Processor (FP): it interacts with the controller
and is responsible for the maintenance and management
of state information in the data plane.

• Flow Table: it plays the role of connecting the entire
system. It can be updated according to the information
issued by the controller and returns associated forwarding
instructions to the forwarding engine.

• State Table: it is used to maintain state information during
the processing procedure in the data plane.

• Policy Module: it is used to store the processing policies
from the controller including the entire STT, AT, config-
uration of state report interval policy, etc.

F. Controller Enhancement in SDPA Architecture

In traditional SDN architecture, stateful applications can be
supported by heavily involving the controller. Each packet has
to be sent to the controller for state maintenance. Despite the
fact that OpenFlow data plane can support some states, such
as counters, it cannot actively maintain state and react to dif-
ferent states. Besides, OpenFlow switches can only track flow
counters with the granularity of flow table entries, which are
always aggregated to save TCAM resource and cannot meet
the requirement of some flow-level stateful applications. Thus,
to get flow-level state without wasting data plane resource,
packets have to be sent to the controller for state maintenance,
which could incur both scalability and performance issues.

In addition to traditional centralized control functions of the
controller, in SDPA architecture, we enhance the controller
to support stateful applications with higher performance.
We design the forwarding processor (FP) inside the switches
for state maintenance in the data plane and use SDPA south-
bound APIs to communicate between the controller and the
switches. The controller is able to initialize an application
inside a switch. During runtime, the controller can pro-actively
add, modify, and delete table entries in FP. Besides, the con-
troller is also able to configure switch properties, including
state report interval, etc. From the applications’ perspective,
the controller exposes north bound APIs for applications to
modify ST, STT, and AT to implement stateful processing
logics.

The controller can receive the state report from the data
plane periodically and update the local record for state
synchronization. The switches do not need to inform the
controller every time a state transition occurs to save network
bandwidth and to relieve controller burden. The state stored
inside the controller can be used for failure recovery. The
controller can install the state of a failed switch to a new
one and redirect flows accordingly. As the controller might
not possess the latest state when a switch fails, the state to
be installed in the new switch could be inconsistent with the
latest state in the old switch. Enabling switch failure recovery
with state consistency is beyond the scope of this paper.

Note that the controller still acts as the centralized intelli-
gence in SDPA architecture. Traditional functions such as link
discovery, topology detection, forwarding, and so on are still
executed by the controller. We add SDPA protocol into the
architecture and maintain state in the data plane to enhance
both performance and scalability for stateful applications.

IV. IMPLEMENTATION OF SDPA SWITCH

SDPA architecture is a generic architecture that can be
implemented in a variety of ways. To demonstrate the feasibil-
ity and efficiency, we implemented both software and hardware
prototype of the SDPA switch. We also developed several
applications such as stateful firewall, DNS reflection defense,
and heavy hitter detection to form a network function chain
both in SDPA software and hardware platform.

A. SDPA Implementation in Software

We extended Open vSwitch (OVS) [4] to support FP and
used Floodlight [1] as the controller, on which we developed
three applications including stateful firewall, DNS reflection
defense, and heavy hitter detection.

We introduce the workflow of packet processing in the
controller, switch, and FP in Workflow 1. This workflow is
implemented in both hardware and software implementations
of SDPA. When a packet arrives, it is matched against the
flow tables to examine if there is a corresponding flow entry.
If not, the packet is sent to the controller. The controller issues
a new flow table entry to the switch, whose instructions contain
GOTO_ST(n). Then, the packet is sent to the state table n in
FP to maintain the states. Subsequent messages are directly
sent to FP to match the corresponding state table. According
to the current state of the connection and the input event,
the next state is decided based on the state transition policies
defined in the state transition table. Finally, FP looks up the
action table to find actions given the next state and the packet
match fields. Here, we should note that after action lookup, FP
immediately executes the actions, since the processing result
of this application might be needed in subsequent stateful
applications or OpenFlow flow table entries. Both software
and hardware implementations perform in the same way.

According to Workflow 1, we extended OVS to support FP
in the data plane. First, we extended the security channel used
to communicate with the controller to support SDPA message
transmission, including both controller-to-FP messages that
initialize and configure stateful applications in switches, and
asynchronous messages that report states to the controller.
Second, we enriched OpenFlow instructions with a GOTO_ST
instruction that directs packets from the OpenFlow pipeline
to FP. Finally, we implemented the table lookup and state
maintenance logics in FP, in order to support finite or infinite
state machines. In the controller side, we also extended Flood-
light security channel to transmit SDPA messages. Moreover,
we implemented the SDPA north bound API on top of the
controller for constructing stateful applications in SDPA.

We implemented the stateful firewall application based on
the SDPA architecture where the FP is used to maintain
the state of TCP connections and UDP pseudo connections.
The ST reside in FP to record state information. A detailed

SUN et al.: SDPA: TOWARD A STATEFUL DATA PLANE IN SDN 3301

Workflow 1: Packet Processing in the Controller, Switch
and FP in SDPA-Based Stateful Applications

Input: Input packets Σ, the state of packets or flows S.
Output: Output packets Σ′, the state of packets or flows

S′.
foreach σ ∈ Σ do1

Flow_Entry e = Switch.Match_Flow_Table(σ);2

if e = NULL then3

Switch.Send_Packet_In(σ);4

/* Example App on the Controller */5

/* Install a flow entry. n is the state table ID for6

the app. */
Controller.Issue_Flow_Entry(σ, GOTO_ST(n));7

/* Construct and install corresponding ST and AT8

entries. */
Controller.Issue_Entry(ST_Entry, AT_Entry, n);9

else10

foreach ins ∈ e.instructions do11

if ins == GOTO_ST (∗) then12

/* Switch: Sent packet to state table n in13

FP. */
Switch.GOTO_ST(n);14

/* FP: Match ST, STT, and AT of the app. */15

State_Entry = FP.Match_ST(σ, n);16

Next_State =17

FP.Match_STT(State_Entry.State, n);
Actions = FP.Match_AT(σ, Next_State, n);18

/* FP: Update the state of the flow in ST. */19

FP.Update_ST(Next_State, State_Entry, n);20

/* FP: Execution actions from AT to the21

packet. */
σ′ = FP.Execute_Action(σ, Actions);22

/* FP: Packet backs to the original flow23

table. */
else24

/* Switch: Original OpenFlow25

instructions.*/

Fig. 6. State table structure of stateful firewalls in SDPA.

structure of ST in the stateful firewall application is depicted
in Fig. 6. The “Match fields” domain consists of SIP, SPORT,
protocol, DIP, and DPORT. And, the “State” domain con-
tains Connection state, Sequence number, Acknowledge num-
ber, Idle timeout, and Hard timeout. The “Actions” domain
includes state operating actions and packet processing actions.

B. SDPA Implementation in Hardware

To validate the feasibility of SDPA, we implemented a
proof-of-concept hardware prototype based on the ONetCard
platform [3] . The ONetCard development platform is an

acceleration card supporting four Gigabit Ethernet interfaces
and two 10G network interfaces based on PCI Express. Its
center is the FPGA device Kintex7 (XC7K325T-2), which
connects network sub-system, storage sub-system, CPU con-
nection sub-system, and inter-board sub-system. As the pro-
grammable center of the entire ONetCard developing board,
the Xilinx Kintex7-325T FPGA provides over 326 thousand
logic cells. The TCAM resource on the board is simulated
by Look Up Tables (LUTs) based on RAM on ONetCard
platform.

The hardware packet processing pipeline is composed of
seven stages as Fig. 7 depicts: (1) RxQs input queues: buffer-
ing packets received from the Ethernet physical ports and
DMA virtual ports. (2) Input Arbiter: selecting one input
queue through polling and dealing with that queue. (3) Tag
Remover: detaching the VLAN tag from original data packet.
(4) Output Port Lookup: core module for packet processing
inside which the packets are temporarily buffered in the Packet
Queue and the Header Parser gets the header fields. The Flow
Table Lookup module matches the packet headers against flow
tables to find associated instructions. The Packet Processor
deals with the packets according to the instructions, such as
modifying the header fields, dropping the packet or setting
output ports. (5) Tag Adder: combing the processed packet
with VLAN tags to form a complete packet. (6) Output
Queues: sending the packet to relevant output queues on the
basis of the processing decisions of the packet. (7) TxQs
Output Queue: buffering the output queue to output port.

To support SDPA in the data plane, we extended the data-
path of the OpenFlow hardware switches as shown in yellow
blocks in Fig. 7. We append one stateful processing module
for each stateful application. During hardware implementation,
we address the following challenges to maintain the flexibility,
scalability and performance of the data plane.

Hiding Heterogeneity: How to present a unified data plane
abstraction and interfaces that hide the underlying differences
between hardware and software switches to the controller?

Maintaining Performance: How to design and program the
additional stateful processing modules to maintain the line rate
processing and minimize latency overhead?

Data Plane Generality: How to build a general and recon-
figurable hardware architecture that can accommodate many
types of stateful network functions through simple reconfigu-
rations from the controller?

The following sections will explain how we address the
above challenges with our hardware design.

1) Unified Data Plane Abstraction and Interfaces: Different
networks may choose to deploy software switches, hardware
switches, or both types. To reduce the complexity of appli-
cation deployment and management, we keep the three-table
abstraction: State Table (ST), State Transition Table (STT), and
Action Table (AT) on hardware switches similar to software
switches, thus maintaining a consistent abstraction between
hardware and software. Over the hardware switch, we imple-
mented a software translation layer that is responsible for
communicating with the controller just like a software switch.
Therefore, the hardware and software switches can expose the
same interfaces to the control plane.

3302 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

Fig. 7. Hardware packet processing pipeline in SDPA architecture.

2) Maintain High Throughput: One of the biggest chal-
lenges in the implementation of SDPA hardware switch is to
maintain high throughput while ensuring correct processing
logic. In one stateful APP module, all three tables including
ST, STT, and AT should be looked up when processing
one packet. One table lookup in TCAM requires 4 clock
cycles (a design referenced from [5]), and three times of
lookups would take 12 clock cycles. An APP module has
to be locked for 12 clock cycles until the current package
has been matched against all three tables, while the header
parser module could deliver parsed header fields every 9 clock
cycles. This inconsistency in clock cycle consumption could
significantly decrease the throughput.

The key to address this challenge is to identify match
dependencies between consecutive packets and shorten the
clock cycle consumption inside each APP module. A match
dependency occurs when an STT lookup triggers a state update
into an ST entry, and the next packet belongs to the same
flow and is being matched against that entry. In this case,
the processing of the current packet must finish both STT
lookup and ST update before the subsequent packet can be
matched against ST. Above two steps must be strictly sequen-
tial to ensure logical correctness, while the rest stages create
parallel opportunities to shorten clock cycle consumption.
Therefore, we optimize the stateful App modules to allow ST
lookup for the next packet immediately after the ST is updated
by the current packet lookup in STT. And, the ST lookup for
the next packet is parallel to the AT lookup for the current
packet. In this way, the minimum gap between two consecutive
packets is reduced to 9 clock cycles (4 cycles for ST lookup,
4 cycles for STT lookup and 1 cycle for ST update), which
is the same as the header parsing stage. Therefore, SDPA
architecture can realize line-rate processing for packets with
any size (from 64 Bytes to 1500 bytes in our experiments).

3) Reconfigurable Hardware: Based on the unified SDPA
paradigm and southbound APIs, SDPA hardware switches are
more general than traditional dedicated middleboxes, and can
support many stateful applications. For those applications that
can be abstracted into the SDPA paradigm, SDPA hardware
switches can support these applications by simply configuring
ST, STT and AT. Through the unified interfaces, the controller
is able to initiate a stateful application by issuing stateful table
entries to the software layer on top of the hardware switch. The
software layer will then translate them into hardware

configurations and convey them into the hardware switch
through drivers. To destroy a stateful application, the controller
could clear all stateful table entries and steer packets away
from the application, after which hardware resource can be
reused to accommodate a new stateful application.

C. Customization of Network Function Chain

SDPA hardware switches support the customization of
network function chains through the SDPA paradigm and cor-
responding APIs. In SDPA hardware switches, network func-
tions can be deployed, updated and destroyed flexibly through
configurations from the controller. For instance, to deploy a
new network function to the SDPA hardware switch, we can
initialize the application in the switches and configure the ST,
STT, and AT through APIs from the controller. By accom-
modating several applications, we enable customization of
network function chains within one switch and we can assign
arbitrary processing orders of the applications as introduced
above. We developed a sample network function chain in an
SDPA hardware switch, which includes stateful firewall, DNS
reflection defense, and heavy hitter detection.

In a DNS reflection attack, attackers send DNS requests
to name servers using the victim host’s source IP address,
thus flooding the victim with the name servers’ responses.
To filter out these unsolicited responses, the SDPA switches
of the victim network maintain the requests sent out from
the local network, and checks the validity of the incoming
responses. In detail, packets whose UDP source or destination
port equals to 53 will be sent to the DNS reflection defense
APP. In the ST, an unmatched DNS request will trigger the
switch to install 2 new entries. We design four states in the
state transition table: the initial state, request sent, response
received for a previously recorded request, and the detection
of an unsolicited response.

D. Dynamic Application Deployment on Hardware Switches

Applications that can be abstracted into the SDPA para-
digm can be dynamically deployed on SDPA switches during
runtime. If an application needs to maintain state information,
and all of its actions belong to the SDPA-supported action set,
it can be deployed on SDPA switches by sending configuration
messages from the controller to the switches.

SUN et al.: SDPA: TOWARD A STATEFUL DATA PLANE IN SDN 3303

The new applications can be deployed in any position in
the network function chain according to controller policies.
It can be implemented through adjusting the parameter n
of action GOTO_ST(n) in the flow tables to direct packets
into the APP. It is deployed on SDPA hardware switches
through the following steps. Firstly, according to application
policy, the controller sends an encapsulated initialization mes-
sage to SDPA switches which is used to install the state table
format, the entire state transition table, and the action table
format. Secondly, the software layer of the switch parses the
messages issued by the controller and installs the tables into
the hardware card. Thirdly, during runtime, if a new flow
arrives at a switch, the switch will packet-in the first packet
of the flow. The controller will add stateful table entries to the
switches according to application decisions.

E. Scalability of SDPA Architecture

The ST, STT, and AT in SDPA could cost TCAM resources
inside switches. Such an architecture could give rise to the
scalability problems, including (1) Both ST and AT maintain
the “Match Field”, which could waste TCAM resources when
processing massive flows; (2) Various applications would have
different table length and depth. However, current FPGA
implementation of SDPA has to assign those parameters in
advance. This inflexibility would cause an inefficient resource
allocation; and (3) Flow level states could be unavoidably mas-
sive. As a result, lots of table entries are required to maintain
flow-level state inside the data plane and would heavily cost
TCAM resources; (4) The STT of each stateful application
should be pre-populated into the switches, which could cause
major resource consumption due to massive states; Addressing
above challenges, we propose the following solutions.

1) Duplicated Storage of “Match Fields”: In SDPA design,
each stateful application in the data plane processes packets
according to related flow state. However, if an application
wants to provide finer granularity of control over the flows,
it may need to specify actions with regard to both packet match
fields and its state. Suppose a stateful application wants to
forward packets from subnet A1 in ESTABLISHED state
to port 1. It could install a rule on ST to monitor the packets
from subnet A1, and install a rule on AT to forward the packets
with the ESTABLISHED state to port 1. Thus, ST and
AT both maintain the match fields of the same flow. Such an
implementation on hardware could waste storage resources.

In fact, within an APP module, packet header fields are
first matched against ST and then AT. We can utilize this
knowledge by tagging flows in ST, an idea similar to the packet
metadata that has been proposed in OpenFlow [20] and P4 [9],
and identifying different flows in AT according to tags. More
precisely, we extend ST with a field that records a tag for
different flows in ST. Then, the combination of state and tag
of a flow, which are precisely the fields to match in AT, are
extracted and passed to AT to look up the actions. By tagging
flows in ST, we can only store the match fields of the flows
once in ST, in order to reduce the storage resource overhead.

2) Fixed Table Length and Depth: Currently, each applica-
tion possesses three tables with fixed entry length and table

depth in the hardware implementation due to the constraints
of FPGA. However, according to our design, we can support
any kind of stateful applications with various states. We cannot
pre-estimate the header fields to match, the flow number to
process and the entry number of the tables. Therefore, we have
to allocate abundant resources just in case of heavy resource
consumption of an application, which could cause waste due
to extra entry length and table depth.

To address this challenge, we restrict the number of appli-
cations carried in each hardware switch to ensure sufficient
resource for each application and avoid potential overload.
In the future, we plan to implement SDPA on advanced hard-
ware platforms such as RMT [10] that provides configurable
width and depth of tables to improve resource utilization
efficiency.

3) Massive Number of Flow-Level States: SDPA supports
flow-level state monitoring in the data plane. However, flows
could be of excessive number and result in heavy cost of data
plane TCAM resources. This challenge seems inevitable due
to our proposal of maintaining state inside the data plane.
Nevertheless, according to a detailed research of commonly
used stateful applications, we are able to recognize some
particular states that are monitored by lots of applications.
As can be seen in TABLE I, two most commonly monitored
states are TCP state and flow counters. This reveals that
we do not need to maintain separate table sets for different
applications. Instead, we divide applications by the states they
monitor, and keep one table set for applications monitoring
the same state.

We develop a State Interest Registration (SIR) module
inside the controller, which provides a set of state choices and
collects state interests from all stateful applications. It will
issue tables for each type of state into switches. All packet-ins
will be sent to all applications to check what state of this flow
they want to monitor and handle. Only one ST entry of this
flow related to one type of state will be issued. State reports
from switches are stored inside SIR. Through SIR, tables
can be aggregated at application level, resulting in a major
efficiency improvement on data plane resource utilization.

4) Pre-Population of STT: During the application initial-
ization, the STT of an application should be pre-populated
into the data plane, which could harm scalability. However,
according to above summary, two most commonly moni-
tored states are the TCP state and flow counters. We design
16 transition policies according to the TCP state machine and
only 2 transition policies for flow counters introduced in Fig 4.
Besides, if two applications follow the same state machine,
the state transition policies of the two applications are likely
to be identical, where only one STT is issued into the switch
for the two applications to further save switch resources.

V. EVALUATIONS

We run the SDPA software switch in Ubuntu 12.04 system
on a DELL R720 server equipped with a Xeon E5-2609
(2.4 GHz) CPU, 16GB internal memory and two 10 Gigabit
Network Interface Cards. Furthermore, we use OVS-DPDK
to enhance the performance of the software SDPA switch.
We run an enhanced Floodlight controller on another server

3304 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

Fig. 8. Performance comparison between a SDPA software switch and a traditional OVS-based OpenFlow software switch with or without DPDK
acceleration. Kernel-based stands for software implementation without DPDK acceleration. (a) Stateful firewall (SF) (b) Stateless forwarding (c) Scalability of
software SDPA.

with the same configuration. The controller is wire-connected
to software and hardware switches respectively in differ-
ent experiments. SDPA hardware switch is implemented on
ONetCard as introduced above. For test traffic, we use a DPDK
based packet generator that runs on a separate server and is
directly connected to the software or hardware switches. The
generator sends and receives traffic to measure latency and
throughput.

SDPA could efficiently support stateful applications.
We evaluate SDPA with the following goals:

• demonstrate that the SDPA software implementation
can support stateful applications with higher
performance compared with OpenFlow software
implementation (Fig. 8(a)), and suffers little performance
overhead when supporting stateless applica-
tions (Fig. 8(b)). Besides, SDPA stateful processing only
introduces a little performance overhead compared with
stateless processing (Fig. 9(b)).

• demonstrate that SDPA has great scalability with respect
to ST and AT sizes (Fig. 8(c)).

• compare the performance of SDPA hardware implemen-
tation and software implementation (Fig. 9(a)).

• demonstrate that SDPA software and hardware implemen-
tations could support service chains with linear latency
and equal throughput (Fig. 9(c)).

A. Performance of Stateful Firewalls in SDPA Software
Switch v.s. in Traditional Openflow Software Switch

To evaluate the efficiency of SDPA, we developed a stateful
firewall application based on the traditional SDN architecture,

where the state information is maintained in the controller.
In this architecture, a large number of packets should be sent to
the controller to check its state information before forwarding.
We evaluated the performance of processing states in software
switches in the SDPA architecture against processing states in
the controller in the traditional SDN architecture.

We tested the forwarding latency and the throughput respec-
tively by sending packets of 64 to 1500 bytes. The average
forwarding latency reduces significantly in SDPA architecture
than that in traditional SDN architecture, with or with-
out DPDK acceleration, as shown in Fig. 8(a). In addi-
tion, the throughput increases significantly in the SDPA
architecture. When realizing stateful firewalls in the traditional
SDN architecture, the processing bottleneck of the controller
limits the processing capability of the firewalls. While realiz-
ing stateful firewalls in the SDPA architecture, SDN data plane
maintains all state information. The throughput of the firewalls
is significantly improved regardless of the size of packets.

B. Performance of Stateless Forwarding in SDPA Software
Switch v.s. in Traditional Openflow Software Switch

Since the SDPA architecture is fully compatible with Open-
Flow, SDPA can also support stateless processing. While
performing stateless forwarding in the data plane, the average
forwarding latency in the SDPA architecture remains almost
equal to that in the traditional SDN architecture with or with-
out DPDK acceleration, as shown in Fig. 8(b). The throughput
in the SDPA architecture is almost the same as that in the
traditional SDN architecture. Applications that do not need to
maintain state information can be fully supported by simply

SUN et al.: SDPA: TOWARD A STATEFUL DATA PLANE IN SDN 3305

Fig. 9. Performance comparison between a SDPA hardware switch and a SDPA software switch. In the figure legends, HW is short for Hardware, SW for
Software, Kernel-based for software implementation without DPDK acceleration. (a) Stateful firewall (b) Stateful firewall v.s. Stateless forwarding (c) Network
function chain.

sending packets through flow tables like traditional OpenFlow
with no additional overhead.

C. Testing the Scalability of State Tables
We performed a test on the scalability with respect to the

state table size in the SDPA software switch and its impact on
the latency and throughput. Since state tables are implemented
in SRAM in software prototype, the state tables size can be
increased to a large extent. We used 64-byte packets to conduct
our experiment. As the state table size increases from 1000 to
50000, the forwarding latency does not increase significantly,
and the throughout almost remains the same with or without
DPDK acceleration as shown in Fig. 8(c). The table lookup
procedure consumes short time and has little effect on the
performance, showing good scalability.

The hardware implementation of SDPA is developed based
on ONetCard, where state tables are implemented in TCAM.
For each flow, it takes 248 bits to store its header, 8 bits to store
its state in the ST, and 320 bits to store an entry in AT. STT is
small (24 bits for each entry) with the fixed entry number and
is shared among all flows. Its average resource cost for one
flow can be omitted. Therefore, the total TCAM consumption
for one flow is 576 bits. Considering that OpenFlow 1.0 uses
568 bits for each flow table entry, memory consumption to
maintain and process the state of one flow in SDPA is almost
the same as a traditional flow entry. In the situation where one
switch is fully assigned to carry a stateful firewall application,
only one wildcard flow table entry that directs all packets into
ST is needed. The state table can be used to perform state

validation and forwarding, covering the role of the flow tables.
In this way, little additional memory is needed to process the
same number of flows compared with traditional OpenFlow.

D. Performance of Stateful Firewalls in the SDPA Hardware
Switch v.s. in the SDPA Software Switch

We compared the performance of the stateful firewall appli-
cation in SDPA hardware and software switches. As illustrated
in Fig. 9(a), the forwarding latency of the hardware-based
implementation is much lower than that of the kernel-
based software implementation, while the throughput of the
hardware-based implementation increases to a large extent
compared with the kernel-based implementation, especially
for small sized packets. Even with DPDK acceleration, soft-
ware SDPA switches still underperforms hardware switches in
latency and throughput. The experimental results demonstrate
the feasibility of implementing SDPA paradigm in a hardware
paradigm to achieve much higher performance than software
implementation. The SDPA hardware switch can achieve line-
rate for packets of any size during stateful packet processing.

E. Performance of Stateful Firewalls v.s. Stateless
Forwarding in SDPA Hardware Switch

We compared our stateful firewall in the SDPA hardware
switch with stateless forwarding in the traditional OpenFlow
hardware switch. As can be seen in Fig. 9(b), the forwarding
latency of the stateful firewall in the SDPA architecture
is slightly higher than stateless forwarding. The processing

3306 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

overhead is acceptable and the throughput is nearly unchanged
as shown in Fig. 9(b). This proves that stateful processing
contributes to only a little performance overhead. As explained
above, it only takes as few as 9 additional clock cycles to
perform table lookup and processing in the data plane, which
contributes to only 72ns for 125MHz board clock frequency.

F. Performance of the Network Function Chain in SDPA
Hardware Switch v.s. in SDPA Software Switch

We evaluated the performance of the network function
chain comprising stateful firewall, DNS reflection defense, and
heavy hitter detection functions implemented on the SDPA
hardware switch against the same chain on software SDPA
switch. As can be seen from Fig. 9(c), average forwarding
latency of hardware switch is much lower than that of software
switch, while the throughput of hardware is much higher
than software. This result is consistent with Section V-D, and
proves the feasibility of forming a hardware SDPA network
function chain and achieving high performance.

Due to the limited hardware resource, we could only imple-
ment three NFs on the ONetCard platform. By comparing
Fig. 9(a) and Fig. 9(c), we could conclude that increasing
the number of Apps traversed by packets could increase the
processing latency and incur little overhead on the throughput
for both hardware and software implementations. As analyzed
in Section V-C, the table entry size in SDPA is fixed. There-
fore, the number of Apps that can be accommodated on a
hardware platform is proportional to the hardware resource
amount. In future, we plan to implement SDPA on advanced
hardware platforms that could provide more richer resource.

G. Evaluation Based on a Real-World Network Topology
We evaluated the performance of software network function

chain in a Mininet simulation environment based on a real-
world network topology derived from the Stanford backbone
network [2]. We selected a three-hop forwarding path. Each
switch in this path carries one unique network function. For
packets of 1024 bytes, the forwarding latency is approximately
3900μs and the throughput is about 9.5Gbps. This result
demonstrates the feasibility of implementing SDPA in a real-
world network topology with satisfying performance.

VI. RELATED WORK

OpenFlow Data Plane Abstraction: Some research efforts
have been recently devoted to extend the OpenFlow data plane
abstraction [8], [10], [13], [19], [29]. Bosshart et al. [10]
pointed out that the rigid table structure of current hardware
switches limits the scalability of OpenFlow packet processing
to a fixed-set of fields and to a small set of actions. They
introduced a logical table structure RMT (Reconfigurable
Match Table) on top of the existing fixed physical tables and
new action primitives. In comparison, we strive to enhance the
programmability of the data plane by adding a co-processing
unit in SDN switches.

Bianchi et al. [8] proposed an abstraction to formally
describe the desired stateful processing of flows inside SDN
data plane based on eXtended Finite State Machines (XFSM).

The functionality of XFSM table in OpenState is similar to that
of STT and AT tables in SDPA. The design of XFSM actually
combines the STT and AT of SDPA. However, OpenState
only supports finite state machines, while SDPA could also
accommodate infinite state machines by enhancing definitions
of the event and action fields in STT and AT tables. Therefore,
SDPA provides a more powerful and general abstraction for
various stateful applications.

Moshref et al. [21] proposed FAST (Flow-level State Transi-
tions) as a new switch primitive for SDN. Shuyong et al. [29]
introduced a preliminary stateful forwarding solution in the
SDN data plane. However, none of them presented the relation-
ships and interactions between the state tables and flow tables
in SDN switches. Thus their compatibility with OpenFlow
remains unclear. They also did not elaborate the fundamen-
tal shortcoming of the limited “match-action” paradigm in
the current OpenFlow specification. Besides, they could not
provide concrete implementations and extensive evaluations.
In this paper, we presented a novel “match-state-action” par-
adigm for the SDN data plane and designed an extended
OpenFlow protocol to operate the state information in the
data plane. We also developed both software and hardware
prototypes of the SDPA architecture. Especially, we developed
three stateful applications and organized them as a network
function chain in an SDPA hardware switch, and provided
support for dynamic deployment of new applications.

Data Plane Programmability: Some efforts have been
devoted to enhance the programmability of the SDN data
plane [9], [27]. Among them, P4 [9] is a typical lan-
guage for programming protocol-independent packet proces-
sors. Although P4 is also capable of supporting advanced
applications, such as the heavy hitter detection and the
Paxos consensus protocol [11], in the data plane, SDPA and
P4 differ in their design goals. P4 aims to enhance the data
plane programmability. Therefore, it proposes an abstraction
for data plane behaviors along with a related high level
language. In contrast, SDPA addresses the limitation of the
simple “match-action” paradigm of OpenFlow when sup-
porting advanced stateful applications. Since heavily relying
on SDN controllers for all state maintenance incurs both
scalability and performance issues, SDPA proposes a “match-
state-action” paradigm for stateful applications, which could
be intuitively programmed and efficiently supported in the
data plane. Thus, SDPA provides a higher level abstraction
than P4. Through proper encapsulation, P4 could work as
a potential target data plane for SDPA. Moreover, P4 data
plane supports customized protocols by parsing headers based
on a state machine. Since SDPA data plane already supports
state machines, SDPA could possibly achieve the protocol
independence similar to P4.

Middlebox Enhancement: Since current OpenFlow data
plane is limited to support stateful processing, the advanced
packet processing has been turned to specialized middle-
boxes [7], [16]. Anwer et al [7] also believe that expanding the
“match-action” interface could make it possible for network
operators to implement more sophisticated policies. To support
complex middlebox functions in SDN, Fayazbakhsh et al. [12]
developed a FlowTags architecture, which attempts to combine

SUN et al.: SDPA: TOWARD A STATEFUL DATA PLANE IN SDN 3307

traditional middleboxes with the SDN architecture. There
are also some efforts for developing middlebox functions
using SDN [14], [22], [26]. In particular, Gember et al. [14]
advocated for a mechanism that helps exercise unified con-
trol over the key factors influencing middlebox operations.
Qazi et al. [22] proposed to add an SDN-based policy enforce-
ment layer for efficient middlebox-specific traffic steering.
However, above research efforts lack a general programming
interface for stateful applications. Moreover, the network is
filled with various middleboxes, and the network structure
is complex. We believe that with SDPA stateful data plan
abstraction, new approaches would be stimulated for designing
middlebox functions within the SDN architecture.

Another option to address current middlebox limitations is
to utilize virtualization technologies to manage networking
functions via software, as opposed to having to rely on
proprietary middleboxes to handle these functions, referred to
as Network Functions Virtualization (NFV) [17]. Since SDN
and NFV are complementary technologies [30], we believe
our solution can facilitate the realization of stateful network
functions in NFV through integrating our SDPA architecture
into Service Function Forwarder (SFF) in NFV [6]. Especially
our hardware implementation can provide high forwarding
capacity to fulfill the requirements of stateful packet process-
ing required by advanced network functions.

VII. DISCUSSION

A. Flow Migration in SDPA

In the situation where one switch is overloaded, the operator
needs to migrate some flows from the switch to another one.
For stateful applications such as stateful firewalls, migrating
flows means migrating the ST, STT and AT entries. We could
refer to OpenNF [15] and enhance both SDPA data plane
and control plane to realize loss-free and order-preserving
state migration among SDPA switches. As introduced above,
the software layer of a SDPA hardware switch is responsible
for the communication with the controller. Therefore, software
and hardware switches will react similarly in state migration.

B. Limitation of SDPA

As discussed above, SDPA could efficiently support appli-
cations that can be abstracted into finite or infinite state
machines. Thus, the capability of SDPA equals a Finite
Automation in the automation theory, and therefore is not
Turning Complete. However, the stateful abstraction of SDPA
is capable of representing a large number of general network
functions including stateful firewalls, heavy hitter detection,
etc. Through both software and hardware implementations,
SDPA could support them with high performance.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a new “match-state-
action” paradigm in the data plane, which has the generality
to support various applications that need to process state
information. We have proposed a novel stateful data plane
architecture SDPA. Through adding a co-processing unit,
the FP, it can manipulate state information in the SDN data

plane. We have also designed an extended OpenFlow protocol
to implement the communication between the controller and
the FP. In addition, we have implemented both software and
hardware prototypes of SDPA switches, and developed a net-
work function chain in a SDPA hardware switch. Experimental
results show that the SDPA architecture can tremendously
improve the forwarding efficiency with manageable processing
overhead for those applications that need to maintain states.

For the future work, we will develop more stateful applica-
tions based on the SDPA architecture to further validate the
effectiveness of our approach. We will also extend the concept
of state in our architecture to include switch states such as
queueing delay, link states, and other customized states to
support more complex applications. Finally, future adoption
of advanced data plane platforms, such as RMT [10], could
further improve data plane resource utilization efficiency and
enhance the scalability of SDPA architecture.

IX. AVAILABILITY

The SDPA source code is available on Github
at: https://github.com/sdpa-project/sdpa.git

REFERENCES

[1] Floodlight, accessed on Jul. 22, 2017. [Online]. Available:
http://www.projectfloodlight.org/floodlight/

[2] Header Space Library, accessed on Jul. 22, 2017. [Online]. Available:
https://bitbucket.org/peymank/hassel-public

[3] Onetcard, accessed on Jul. 22, 2017. [Online]. Available:
http://www.xilinx.com/products/boards-and-kits/1-411ymv.html

[4] Open vSwitch, accessed on Jul. 22, 2017. [Online]. Available:
http://openvswitch.org/

[5] OpenFlow Switch on NetFPGA, accessed on Jul. 22, 2017. [Online].
Available: https://github.com/NetFPGA/netfpga

[6] Service Function Chaining (SFC), accessed on Jul. 22, 2017. [Online].
Available: https://datatracker.ietf.org/wg/sfc/

[7] B. Anwer, T. Benson, N. Feamster, D. Levin, and J. Rexford,
“A slick control plane for network middleboxes,” in Proc. ACM SIG-
COMM Workshop Hot Topics Softw. Defined Netw. (HotSDN), 2013,
pp. 147–148.

[8] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “OpenState:
Programming platform-independent stateful OpenFlow applications
inside the switch,” ACM SIGCOMM Comput. Commun. Rev., vol. 44,
no. 2, pp. 44–51, 2014.

[9] P. Bosshart et al., “P4: Programming protocol-independent packet
processors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,
pp. 87–95, 2014.

[10] P. Bosshart et al., “Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN,” in Proc. ACM SIG-
COMM Conf. SIGCOMM (SIGCOMM), 2013, pp. 99–110.

[11] H. T. Dang, M. Canini, F. Pedone, and R. Soulé, “Paxos made
switch-y,” ACM SIGCOMM Comput. Commun. Rev., vol. 46, no. 1,
pp. 18–24, 2016.

[12] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul,
“Enforcing network-wide policies in the presence of dynamic middlebox
actions using FlowTags,” in Proc. USENIX Symp. Netw. Syst. Des.
Implement. (NSDI), 2014, pp. 533–546.

[13] Open Networking Foundation (ONF), “Software-defined networking:
The new norm for networks,” Open Netw. Found. (ONF), White Paper,
2012. [Online]. Available: https://www.opennetworking.org/images/
stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf

[14] A. Gember, R. Grandl, J. Khalid, and A. Akella, “Design and implemen-
tation of a framework for software-defined middlebox networking,” ACM
SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 467–468, 2013.

[15] A. Gember-Jacobson et al., “OpenNF: Enabling innovation in network
function control,” in Proc. ACM Conf. SIGCOMM, 2014, pp. 163–174.

[16] G. Gibb, H. Zeng, and N. McKeown, “Initial thoughts on custom
network processing via waypoint services,” in Proc. 3rd Workshop
Infrastruct. Softw./Hardw. Co-Des. (WISH), 2011. [Online]. Available:
http://yuba.stanford.edu/~nickm/papers/waypoint-cgo11.pdf

[17] R. Guerzoni “Network functions virtualisation: An introduction,
benefits, enablers, challenges and call for action, introductory white
paper,” in Proc. SDN OpenFlow World Congr., 2012, pp. 5–7.

3308 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

[18] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, and S. Goll, “Modeling
and performance evaluation of an OpenFlow architecture,” in Proc.
23rd Int. Teletraffic Congr., 2011, pp. 1–7.

[19] V. Jeyakumar, M. Alizadeh, Y. Geng, C. Kim, and D. Mazières, “Mil-
lions of little minions: Using packets for low latency network program-
ming and visibility,” in Proc. ACM Conf. SIGCOMM, 2014, pp. 3–14.

[20] N. McKeown et al., “OpenFlow: Enabling innovation in campus
networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, 2008.

[21] M. Moshref, A. Bhargava, A. Gupta, M. Yu, and R. Govindan,
“Flow-level state transition as a new switch primitive for sdn,” in Proc.
ACM SIGCOMM Workshop Hot Topics Softw. Defined Netw. (HotSDN),
2014, pp. 61–66.

[22] Z. A. Qazi et al., “SIMPLE-fying middlebox policy enforcement
using SDN,” ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4,
pp. 27–38, 2013.

[23] C. Roeckl, “Stateful inspection firewalls,” Juniper Netw., Sunnyvale, CA,
USA, White Paper, 2004. [Online]. Available: http://www.abchost.cz/
download/204-4/juniper-%EE%80%80stateful%EE%80%81-inspection-
firewall.pdf

[24] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design and
implementation of a consolidated middlebox architecture,” in Proc. 9th
USENIX Conf. Netw. Syst. Des. Implement., 2012, p. 24.

[25] J. Sherry et al., “Making middleboxes someone else’s problem: Network
processing as a cloud service,” ACM SIGCOMM Comput. Commun.
Rev., vol. 42, no. 4, pp. 13–24, 2012.

[26] S. Shin et al., “FRESCO: Modular composable security services
for software-defined networks,” in Proc. Netw. Distrib. Syst. Secur.
Symp. (NDSS), 2013. [Online]. Available: https://www.internetsociety.
org/doc/fresco-modular-composable-security-services-software-defined-
networks

[27] H. Song, “Protocol-oblivious forwarding: Unleash the power of
SDN through a future-proof forwarding plane,” in Proc. ACM
SIGCOMM Workshop Hot Topics Softw. Defined Netw. (HotSDN), 2013,
pp. 127–132.

[28] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability of
software-defined networking,” IEEE Commun. Mag., vol. 51, no. 2,
pp. 136–141, Feb. 2013.

[29] S. Zhu, J. Bi, and C. Sun, “SFA: Stateful forwarding abstraction in
SDN data plane,” Open Netw. Summit Res. Track (ONS), 2014.

[30] M. Zimmerman, D. Allan, M. Cohn, N. Damouny, and
Kolias, “OpenFlow-enabled SDN and network functions
virtualization,” ONF, White Paper, 2014. [Online]. Available:
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/solution-briefs/sb-sdn-nvf-solution.pdf

Chen Sun received the B.S. degree from the Depart-
ment of Electronic Engineering, Tsinghua Univer-
sity, in 2014, where he is currently pursuing the
Ph.D. degree with the Institute for Network Sci-
ences and Cyberspace. He has authored papers in
SIGCOMM, ICNP, SOSR, IEEE Communications
Magazine, and the IEEE Network Magazine. His cur-
rent research interests include Internet architecture,
software-defined networking, and network function
virtualization.

Jun Bi (S’98–A’99–M’00–SM’14) received B.S.,
C.S., and Ph.D. degrees from the Department of
Computer Science, Tsinghua University, Beijing,
China. He is currently a Changjiang Scholar Dis-
tinguished Professor and the Director of Network
Architecture Research Division, Institute for Net-
work Sciences and Cyberspace, Tsinghua University.
His current research interests include Internet archi-
tecture, SDN/NFV, and network security. He suc-
cessfully led tens of research projects, published
over 200 research papers and 20 Internet RFCs

or drafts, and also holds 30 innovation patents. He received the National
Science and Technology Advancement Prizes, the IEEE ICCCN Outstanding
Leadership Award, and Best Paper awards. He is the Co-Chair of the AsiaFI
Steering Group and the Chair of the China SDN Experts Committee. He served
as the TPC Co-Chair of a number of Future Internet related conferences or
workshops/tracks at INFOCOM and ICNP. He served on the Organization
Committee or Technical Program Committees of SIGCOMM, and ICNP,
INFOCOM, CoNEXT, and SOSR. He is a Distinguished Member of the China
Computer Federation.

Haoxian Chen received the B.S. degree from the
Department of Electronic Engineering, Tsinghua
University, Beijing, China, in 2016. He is currently
pursuing the Ph.D. degree with the Computer Sci-
ence Department, Carnegie Mellon University. His
current research interests include computer networks
and distributed systems.

Hongxin Hu (S’10–M’12) received the Ph.D. degree
in computer science from Arizona State University,
Tempe, AZ, in 2012. He is currently an Assistant
Professor with the Division of Computer Science,
School of Computing, Clemson University. His cur-
rent research interests include security in emerg-
ing networking technologies, security in Internet of
Things, security and privacy in social networks, and
security in cloud and mobile computing. He has
authored over 80-refereed technical papers, many
of which appeared in top conferences and journals.

He was a recipient of the Best Paper Award from ACM CODASPY 2014, and
the Best Paper Award Honorable Mentions from ACM SACMAT 2016, IEEE
ICNP 2015, and ACM SACMAT 2011. His research has been funded by the
National Science Foundation, U.S. Department of Transportation, VMware,
Amazon, and Dell. He has served as a Technical Program Committee Member
for many conferences, such as the IEEE Conference on Communications
and Network Security, the ACM Symposium on Access Control Models and
Technologies, and the IEEE Global Communications Conference.

Zhilong Zheng received the B.S. degrees from the
School of Software Engineering from Chongqing
University, Chongqing, China, in 2016. He is
currently pursuing the Ph.D. degree with the
Institute for Network Sciences and Cyberspace,
Tsinghua University. His research interests include
software-defined networking and network function
virtualization.

Shuyong Zhu received the B.S. and M.S. degrees
from the National University of Defense Technology,
Changsha, China, and the Ph.D. degree with from
Department of Computer Science, Tsinghua Uni-
versity, Beijing, China. His research fields include
Internet architecture, software-defined networking,
and network function virtualization.

Chenghui Wu received the B.S. degree from the
Department of Electronic Engineering, Tsinghua
University, in 2013, where he is currently pursuing
the Ph.D. degree with the Institute for Network
Sciences and Cyberspace. His research interests
include Internet architecture and software-defined
networking.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

