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Abstract—Many enterprises run Network Function Virtual-
ization (NFV) services on public clouds to relieve management
burdens and reduce costs. However, NFV operators still face the
burden of choosing the right types of virtual machines (VMs) for
various network functions (NFs), as well as the cost of renting
VMs at a granularity of months or years while many VMs remain
idle during valley hours. A recent computing model named server-
less computing automatically executes user-defined functions on
requests arrival, and charges users based on the number of
processed requests. For NFV operators, serverless computing
has the potential of completely relieving NF management burden
and significantly reducing costs. Nevertheless, naively exploring
existing serverless platforms for NFV introduces significant per-
formance overheads in three aspects, including high remote state
access latency, long NF launching time, and high packet delivery
latency between NFs. To address these problems, we propose
Serpens, a high-performance serverless platform for NFV.
Firstly, Serpens designs a novel state management mechanism
to support local state access. Secondly, Serpens proposes an
efficient NF execution model to provide fast NF launching and
avoid extra packet delivery. We have implemented a prototype of
Serpens. Evaluation results demonstrate that Serpens could
significantly improve performance for NFs and service function
chains (SFCs) comparing to existing serverless platforms.

I. INTRODUCTION

Network Function Virtualization (NFV) was recently intro-

duced to address the limitations of traditional proprietary mid-

dleboxes. NFV runs Network Functions (NFs) on commodity

servers rather than various dedicated hardware to simplify

management and reduce capital and operation expenses [1].

Currently, many enterprises deploy NFs on public clouds

to completely relieve the management burden of machine

maintenance and leverage the economies of scale to reduce

costs [2].

However, running NFV on public clouds still faces signifi-

cant management burdens and unnecessary costs. First, public

clouds offer dozens of VM types with subtly different hard-

ware configurations. Meanwhile, the performance of different

NFs is sensitive to different types of hardware resource [3].

Thus, it is challenging to find the most suitable VM types for

various NFs. Second, the deployment and performance tuning

of service function chains (SFCs) are difficult. To achieve high

performance, merely choosing the right CPU cores to run NFs

in an SFC is non-trivial [4], let alone other hardware details

and traffic characteristics. Finally, NFV operators have to rent

sufficient VMs to handle peak workload [5]. Besides, launched

VMs are billed at a granularity of hours to months, while many

VMs are idle for most of its processing time [6].

Recently, a new computing model named serverless comput-
ing, also known as function-as-a service (FaaS), is introduced,

which has the potential of eliminating problems mentioned

above like management burden and further reducing costs.

Users only need to provide functions to the serverless platform.

The platform automatically executes the functions within

newly deployed instances (e.g. containers) to process requests

and destructs these instances when no more requests arrive for

processing. Users no longer need to consider function deploy-

ment, management, and scaling issues. Moreover, serverless

platforms charge users according to the number of requests,

i.e. packets in the NFV context, so that users only pay for

what they use at a very fine granularity. Above benefits have

been highlighted in many researches [7]–[9], and serverless

computing is already available in commercial platforms [10],

[11] and open-source platforms [12], [13].

However, naively exploring existing serverless platforms

to support NFV could suffer from significant performance

overhead. As a recent research effort reported [7], the av-

erage latency of a serverless-enabled Firewall is 3.39 ms,

which is higher than a container-based [14] or process-based

Firewall [15] by one to two orders of magnitude. Moreover,

we have implemented a Firewall on an advanced serverless

platform [16] and found that the total latency between a

batch of packets entering and exiting the Firewall is 482.54

μs, while the actual packet processing time is merely 9.11

μs, which reveals severe performance overhead in serverless

enabled NFV. To fully understand the performance problem,

we profiled this NF and identified the following three major

latency sources. We present more details in §II.
• State access latency. To maintain function state (e.g vari-

ants) after instance destruction, existing serverless platforms

use remote storage to store state, which could incur high

state access latency during packet processing.

• NF launching time. Existing platforms launch a new

process that executes NFs for each batch of packets, which

introduces unavoidable NF launching time.

• Packet delivery latency. Existing platforms forward pack-

ets between NFs in an SFC in a centralized or distributed

manner, which suffers from high packet delivery latency.
To address the above problems, we propose Serpens, a
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high-performance serverless platform for NFV. To the best

of our knowledge, Serpens is the first serverless platform

specially designed for NFV. Serpens first designs a novel

state management mechanism that persists state in shared

memory and supports local state access for all NFs. Sec-

ond, Serpens proposes an efficient NF execution model

by decoupling resource unit and NF execution, and utilizes

function call to enable fast NF launching and avoid extra

packet delivery. Moreover, Serpens provide a programming

abstraction to mitigate NF development efforts based on our

serverless platform.

Overall, this paper makes the following contributions:

• We present the motivation of enabling serverless computing

for NFV and elaborate on the performance problem of

existing serverless platforms to support NFs (§II).

• We design Serpens, a high-performance serverless plat-

form for NFV, including a novel state management mech-

anism to support local state access and an efficient NF

execution model with resource-NF decoupling to enable fast

NF launching and avoid extra packet delivery(§III).

• We have implemented a prototype of Serpens. Evaluation

results demonstrate that compared with existing serverless

platforms, Serpens could improve performance for NFs

and SFCs by up to two or three orders of magnitude (§IV).

II. MOTIVATION AND PROBLEM STATEMENT

In this section, we first introduce the concept of serverless

computing and the reason why serverless could benefit NFV.

Next, we thoroughly analyze the performance problem of

existing serverless platforms when supporting NFV.

A. Serverless Computing

Serverless computing is emerging as an essential evolution

in cloud computing. This model shifts the responsibilities of

application deployment to cloud providers and significantly

reduces the burden on users. In serverless computing, users

no longer have to launch VMs and deploy applications by

themselves. Instead, they only need to provide their applica-

tions as a set of functions and register corresponding requests

to trigger these functions, the serverless platform takes the

responsibility of deploying applications and running associated

functions with an ephemeral execution environment when

receiving trigger requests. Besides, users do not need to

manage cloud resource and scale applications according to

workload variation. The serverless platform allocates resources

for function execution on demand and users only pay for

what they use at a very fine granularity. For example in

AWS Lambda [10], the costs of users are computed either

based on the time their functions running at the granularity of

millisecond or based on the number of requests their functions

processing.

B. When NFV Meets Serverless
As mentioned above, running NFV on public clouds still

suffers from management burdens and unnecessary costs.

Serverless computing has the potential of overcoming these

shortcomings. We present a typical framework of serverless

platforms in Fig. 1. This framework is derived from open-

source serverless platforms [12], [13], [16], which could also

reflect key characteristics of commercial platforms. Next, we

introduce how NFV could benefit from serverless platforms,

mainly focusing on the NF deployment and NF scaling.
1) NF deployment: To deploy NFs on serverless platforms,

users need to provide their NFs as a set of functions and

register corresponding packets to trigger these NFs. As shown

in Fig. 1, on receiving deployment tasks, the Controller first

initializes an Executor for each deployed NF. These executors

maintain the required execution environments for NFs. Then, it

registers corresponding trigger packets for NFs to the Gateway
and the gateway records these packet-NF pairs for future

mapping. Finally, it updates the routing information in the

Router to correctly deliver packets to executors. On receiving

packets, the gateway first maps these packets to their triggered

NFs and tags these NFs into packets. Then, the router delivers

packets to executors according to the tags in packets. Finally,

executors run deployed NFs to process these packets and return

execution results.
2) NF scaling: To handle time-varying workloads, server-

less platforms need to provide on-demand resource manage-

ment and scaling. As shown in Fig. 1, each executor represents

a specific NF and consists of multiple Instances. Usually, each

instance in an executor represents a container and runs the

same NF as other instances. Based on NF’s current workloads,

the controller dynamically launches and destroys instances to

provide corresponding packet processing capacity. Note that

to save resources, the controller could destroy all instances of

an executor if no packet arrives for a period of time.

C. Performance Problem
Although many serverless platforms are available today,

they are all designed for general-purpose computing and

could incur high performance overhead when directly sup-

porting NFV. To understand the performance problem, we
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thoroughly analyze the key mechanisms of existing serverless

platforms [12], [13], [16] and rewrite them to support packet

processing. For convenience and without loss of generality,

we take Firewall as a typical NF example when analyzing

performance problem. Our basic conclusions remain the same

for other NFs. Through exhaustive profiling (evaluation setup

shown in §IV)) the latency of the entire packet processing

pipeline, we identify three major performance overheads.

1) Remote state access: Many NFs are stateful and need to

maintain persistent states for correct packet processing [17]–

[19]. To support stateful applications, existing serverless plat-

forms store the state through storage services [8], [20]. Fig. 2

shows the current state management mechanism of serverless

platforms. This approach decouples the states that NFs need to

maintain from NF processing, and store the state in a remote

storage [21]. In this way, even all instances of an executor are

destroyed, the NF’s state still persists for subsequent packet

processing. However, such remote state access could bring

significant latency overhead, especially for those NFs requires

state access for every packet. As shown in Fig 5, the actual

time for a Firewall to process a batch of packets is only 9.11

μs. However, the state access time reaches 223.71 μs, which

is 25× of the packet processing time.

2) Slow NF launching: Each instance is usually a container

and runs the deployed NF. When the NF needs to access state,

it sends a request to the storage service and waits for response,

which would block processing and waste CPU cycles. To

avoid this waiting, a common approach is launching multiple

processes to hide remote access and keeps CPU busy with

concurrency. Fig. 3 shows the current NF execution model

in an instance and each Worker represents a process. During

initialization, the instance launches a Packet Fetcher process

to wait for packets. Upon receiving a batch of packets, the

Packet Fetcher launches a worker to process these packets. In

most open-source and commercial platforms, such as Open-

FaaS [12] and AWS Lambda [10], the Packet Fetcher launches

a worker by loading the binary file of NF. However, this

approach suffers from long NF launching time [22]. To reduce

the launching time, SAND [16], a state-of-the-art serverless

platform, proposes to load the binary file in advance and fork a

worker to execute it when needed. However, this approach still

needs to launch a new process (with forking) for each batch of

packets. As shown in Fig. 5, the launching time of a Firewall

could be 249.72 μs and is 27× of the packet processing time.

3) Costly packet delivery: In NFV, multiple NFs are usually

chained together to form an SFC. As shown in Fig. 4,

existing service chaining approaches in open-source serverless

platforms can be classified into three categories. Fig. 4(a)

shows the executor based chaining approach and it introduces

a special executor, which we call Chainner, for each SFC. The

chainner is responsible for identifying the next NF and sending

packets to NFs according to SFC requirements. However, since

packets are delivered through the router (shown in Fig. 1,

skipped here for simplicity), this approach needs the router

to deliver packets 6 times for an SFC with 2 NFs. Fig. 4(b)

shows the gateway based chaining approach and it identifies

the next NF through gateway. However, this approach still

needs to send packets to the gateway between every two NFs

and are delivered 4 times. Fig. 4(c) shows the state-of-art

chaining approach and it directly sends packets to the next

NFs. With this approach, packets are only delivered 3 times

and could achieve the lowest latency so far. However, all these

approaches need the router to deliver packets between NFs and

could incur high delivery latency. As shown in Fig. 5, even

directly chaining two Firewalls to form an SFC, the packet

delivery latency between the two Firewalls could be 70.97 μs
and is 8× of the packet processing time.

Summary and root cause analysis. All of the above

mechanisms are designed for general-purpose computing and

could efficiently support lots of applications such as video

processing [9] and distributed computing [8]. However, as

shown in Fig 5, they incur high performance overhead when

supporting NFV. This is because NFs are typical narrow tasks
that usually finish in a short time, and the actual processing

time on a batch of packets only occupies a small portion of

the total running time. Based on this observation, we propose

a new serverless platform specially designed for NFV. This

platform inherits the framework in Fig. 1 to maintain the ben-

efits of serverless computing, but adopts completely different

designs on the above three aspects to improve performance.

III. SERPENS DESIGN

In this section, we first present the design of Serpens
on state management, decoupling between resource unit and

NF execution to address the performance problem. Then, we

introduce the programming abstraction of Serpens for NF

development.

A. State Management

As mentioned in § II-C, stateful NFs could suffer from

significant performance overhead due to remote state access in

serverless platforms. A straightforward solution for this prob-

lem is state localization, i.e. co-locating state and NFs within

VMs or containers [17]. Several existing NFV platforms [17],

[19] adopt this approach to design their state management

mechanisms. As shown in Fig. 6(a), this approach stores states
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inside instances for local and efficient state access. Unfortu-

nately, to save resources and improve efficiency, serverless

instances are designed to be short-lived and stateless [7],

which implies that NFs and states would be destroyed if no

packet arrives for some time (e.g., 3 minutes [12]). Thus,

this approach cannot guarantee correct packet processing for

stateful NFs in serverless platforms.

To address this problem, we propose to decouple the lifecy-
cle of each instance and its state. This design is based on our

observation that the state loss is caused by the shared lifecycle

of instances and their states. Instead of storing state within

instances, we store the state of NFs close to the instances, i.e.

inside the executors, which ensures both state localization and

state persistence after instance destruction. Moreover, a major

benefit of remote shared state access [18] is avoiding state

migration among instances during NF scaling. Similarly, we

also choose to store the state of the same NF in shared memory
inside the executor, which significantly ease state manage-

ment. Fig. 6(b) shows the state management mechanism in

Serpens. Each executor has its own shared memory, which

is separate from others for safety. Since the state of NFs can be

persisted in shared memory, newly launched instances could

simply read/write it to correctly process subsequent packets,

even if all previous instances have been destroyed.

However, state localization could only accelerate per-flow

state access. NFs with global state, such as the traffic vol-

ume counter that should be maintained by all Monitor in-

stances [17], still suffer from high performance overhead due

to cross-instance state synchronization. Furthermore, due to

the limited resource in each server, when scaling NFs in

another server, all states, either per-flow or global, need to be

migrated between servers to ensure correct packet processing,

which could introduce unstable performance [19]. In response,

we propose two key design choices. First, we try to localize

all state, even global state, by slightly relaxing synchroniza-

tion strictness. Second, we propose a performance fluctuation

avoidance strategy for stable NF scaling.

1) Localizing all state: To understand state in NFs, we

thoroughly study common NFs and classify NFs’ state into

four categories according to their state scope (i.e., per-flow

or global) and state access patterns (i.e., read or write): (i)

per-flow/read, (ii) per-flow/write, (iii) global/read, and (iv)

global/write. TABLE I shows the state operations of some

commonly used NFs (derived from [19], [23]). For the state

in category (i) and (ii), it is localized since packets in a flow

NF Name State Description State
Scope

Access
Pattern

Firewall Connection black/white lists Per-flow R

Traffic

Monitor

Connection statistics Per-flow W

Host statistics Global W

Flow

Compressor
Compression rules Per-flow R

Load

Balancer

Flow-server mappings Per-flow W

Server usage statistics Global W

IPSec Security associations Per-flow R

NAT
Flow-IP/Port mappings Per-flow W

Pool of IPs Global W

VPN Key/tunnel configures Per-flow R

IDS/IPS
Connection analysis objects Per-flow W

Match patterns Global R

TABLE I: State scope and access pattern of common NFs

are always sent to the same instance and access the same

shared memory. State in category (iii) never changes after NF

initialization. Therefore, we can just maintain a copy of this

state for each instance or for each executor, which then makes

global/read state local. For category (iv), multiple instances

need to update the global/write state simultaneously, which

requires consistency guarantees. A naive approach is using

synchronization primitives (e.g., locks). However, it could

compromise the performance. To address this challenge, we

propose to slightly trade the state consistency for higher perfor-

mance and provide different consistency guarantees according

to NF requirements.

Specifically, we further divide global/write state into two

types, including single-writer state and multi-writer state. For

the single-writer state, it only allows one writer to update

the state at any time. For example, the pool of IPs/Ports in

NAT is a typical single-writer state, which does not allow

multiple instances to update the state simultaneously to avoid

different flows being mapped to the same IP/Port. For this

type of state, ensuring release consistency [24] is sufficient.

We separate such state into multiple sub-states and bind each

sub-state with one instance. Taking NAT as an example.

For a pool of 100 IPs/Ports, we separate it into two sub-

pools and each pool has 50 IPs/Ports. Each NAT instance

monopolizes one sub-pool, which completely eliminates the

necessity for two instances to operate a shared state. For the

multi-writer state, it allows multiple instances to update the

state at the same time under the condition of copying. The

host statistics (e.g., the traffic volume of a unique IP address)

in Monitor is a typical multiple-writer state, since multiple

instances could collect their own host statistics simultaneously.

For this type of state, we propose to guarantee eventual
consistency [25]. Specifically, we copy the state into multiple

replications and assign each replication to an instance. For

two Monitor instances, to maintain statistics of 100 hosts,

we enable each instance to maintain local host statistics, and

periodically merge these replications to obtain final statistics.

However, completely localizing the global/write state may

violate the correctness of packet processing. For example, an

instance of NAT could exhaust its own local pool of IPs/-

Ports and refuses new connections while other instances have
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enough IPs/Ports, which raises the requirement of dynamical

state update across instances. We provide two ways to update

the localized state of the global/write state. The first one is

periodical updating. For example, we could periodically real-

locate the remaining IPs/Ports across multiple NAT instances.

The second one is actively updating. For example, a NAT

instance could actively trigger the reallocation of remaining

IPs/Ports across multiple NAT instances after exhausting local

IPs/Ports.
2) NF scaling without performance fluctuation: When an

NF instance is overloaded, the existing approach for NF

scaling out is launching a new instance and migrating some

flows with their states from the overloaded instance to the

new one. Nevertheless, due to the limited server capacity,

the newly launched NF instance could be placed on other

servers. Thus, state migration between servers must be done

to ensure packet processing correctness. Especially, the per-

flow state has to be migrated while these flows are terminated

for processing, which could incur significant performance

fluctuation [17]. To address this challenge, we propose the

performance fluctuation avoidance strategy. First, we prefer

launching new NF instances within the same server as pre-

vious instances and benefit from the shared memory design

to avoid state migration. Second, when having to scale NF

across servers, we adopt a migration avoidance strategy, which

only steers new flows to new instances, while using existing

instances to process old flows. Finally, to correctly handle

global/write state, we separate or copy it during scaling. If

the newly launched instances locate at other servers, we need

further migrate the global state to that server. However, no

matter scaling NF inside the same server or across multiple

servers, we only terminate packet processing while separating

or copying the global/write state, which could be done very

quickly (e.g., several microseconds).
3) State Manager: To localize all state and support scaling

strategy, we introduce a State Manager to manage states during

packet processing according to the consistency requirement.

When NF scaling out starts, the state manager separates or

copies global/write state and migrates them to other servers

if required. Fig. 7 shows the intra-server and inter-server NF

scaling workflow. When scaling NF with per-flow state (i.e.,

S1), we use the same state inside the same server and new state

in other servers for newly launched instances. For NF with

Improvement
Mechanism

Launch
Approach

Overhead
(μs)

+ No forking kThread Creat 23.66

+ No creating kThread Pool 5.57

+ Reduced context switch uThread Pool 0.46

+ No context switch Function Call 0.11

TABLE II: Available NF execution models. kThread represents

kernel-level thread, uThread represents user-level thread. ”+”

represents added mechanism upon the previous one.

global/read state (i.e., S2), we use the same state in the same

server and a copy in other servers (with migration operation).

For NF with global/write state (i.e., S3), we first separate or

copy the state. If the newly launched instance locates at other

servers, we need further migrate the state to that server.

For NF scaling in process, the state manager merges states

of recycled instance to other running instances of the same NF.

If no running instance exists, the state manager stores state to

persist storage for future access. For instance failure, similar

to [18], NF can easily recover by launching a new process and

reloading state from shared memory. Due to space limitation,

we omit their detailed workflows.

B. NF Execution

As mentioned in § II-C, existing NF execution model shows

significant performance overhead. First, common NF launch-

ing approach starts a new process for every batch of packets.

Second, current service chaining approach delivers packets

between every two NFs. However, both process starting and

packet delivery incur much higher overhead than actual packet

processing and severely degrade the performance of serverless

platform. The essential cause of performance overhead is the
coupling between resource unit and NF execution, which starts

a new process for every NF with every batch of packets.

Based on this analysis, we propose a resource-NF decoupling

mechanism and perform NFs execution of the entire SFC for

all packets within one process. Although such a mechanism

can lead to weaker isolation, our reasoning is that packets

and NFs of an SFC belong to the same user and not requires

such strong isolation as between SFCs [16]. Besides, users

still benefit from modularization by providing their NFs as

functions and not aware of this variation.

Execution model for NF launching. When coupling resource

unit with NF execution, Packet Fetcher has to start new pro-

cesses for every batch of packets. TABLE II lists the possible

NF launching approaches and their overhead. Compared with

forking overhead of 249.72 μs mentioned in §II-C, kernel-level

threading (first row of TABLE II) replaces process forking

with thread creating, reducing the launching time to 23.66

μs. Kernel-level thread pool (second row of TABLE II) also

helps alleviate the launching burden to 5.57 μs as it launches

NFs by simply selecting active idle threads. User-level thread

pool (third row of TABLE II) can further reduce the launching

overhead to 0.46μs by avoiding context switches between

kernel and user space.
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Despite that user-level thread pool could significantly reduce

NF launching overhead, it trades memory consumption for

launching time and still requires context switch between user

threads. Actually, so long as the coupling between resource

unit (e.g., processes or threads) and NF execution exists,

overhead introduced by resource initialization and context

switches cannot be fully avoided. To address this problem,

we eliminate this coupling and utilize function call for NF

launching (last row of TABLE II) to reduce the overhead

to only 0.11 μs. As mentioned in § II-C, instance launches

multiple workers to hide remote state access latency while we

merge all resources into one worker. However, benefiting from

our state management mechanism (i.e., state localization), state

access latency is significantly slashed. Besides, running mul-

tiple workers simultaneously has the potential to necessitate

synchronization primitives to ensure correct packet processing

(e.g., increasing the counter in Monitor), which could degrade

the performance. Therefore, NF execution with a single worker

is better for Serpens, which implies that launching NFs with

function call is practical and beneficial.

Execution model for service chaining. The current ser-

vice chaining approach in serverless platforms depends on a

centralized or distributed routers to delivery packets among

separate NF instances (§ II). However, due to the coupling

of resource unit and NF execution, this approach can lead

to two problems. First, all packets need to wait in queues

between every two NFs, which could increase latency due

to potentially long waiting time. Second, if multiple NFs in

an SFC run on the same CPU core, they suffer from context

switch overhead, otherwise, the overhead of inter-server/inter-

core communication and cache threshing is unavoidable.

To address the above problems, we also eliminate this

coupling by consolidating multiple NFs in an SFC into a single

instance and chain them through sequential function calls. All

packets for an SFC are delivered to one instance and no packet

delivery between instances is required. Fig. 8(a) shows the

service chaining approach in Serpens. We design a Chaining
Runtime in each instance for service chaining. It sequentially

calls NFs according to the SFC requirement.

NF executor
As mentioned in Fig 3, the Packet Fetcher collects packet

batches and delivers them to the corresponding workers (NF

logic). Different from running NF logic as processes, for a

new batch of packets, the Packet Fetcher directly invokes the

corresponding NF through function call. Such an approach

completely eliminates the worker concept inside NF instances.

The only process running in the instance is the Packet Fetcher

itself. Therefore, there is only one process (i.e., the Packet

Fetcher process) inside every instance.

When it comes to SFC, NFs are sequentially called by

the Chaining Runtime (the same as Packet Fetcher). This

mechanism remains the same when considering the situation

where the subsequent NF of a packet is determined by the

processing result of its previous NF, which we call dynamic

SFC. The left part of Fig. 8(b) shows an example of the

dynamic SFC. First sent to the Firewall (FW), all packets

for this SFC will be sent to the IDS for further inspection if

detected suspicious; otherwise is sent to the Monitor (MON)

for statistics.

To support such SFC, a naive approach is attaching buffers

to each branch and scheduling packets to them [15]. However,

it introduces complex scheduling logic to the runtime, which

may burden the runtime and induce performance degradation.

To design a light-weight runtime, our key idea to support

dynamic SFC is cutting off all execution branches and assem-
bling NFs as a prime sequential SFC. To achieve this goal, we

introduce a label array for each batch of packets. Each label

records the next NF for a packet, determined by the processing

result of its previous NF. When the runtime calls an NF, it

first checks the label array to determine which packets in the

batch should be processed by this NF. After execution, the NF

needs to update these labels according to processing results.

The right part of Fig. 8(b) shows an example of the label array.

After the packets are processed by FW (�), the label array is

updated to ”2-3-3-2”, indicating that the first and fourth packet

should be processed by IDS (�) while others processed by

MON (�). In this way, we simply call all NFs sequentially to

achieve the same effect as the dynamic SFC.

C. Programming Abstraction for NFs

Serpens proposes new state management and service

chaining approaches to improve the performance of serverless

NFV, which requires NF developers to adapt Serpens mech-

anisms. In order to ease NF development, Serpens provides

a programming abstraction in the format of APIs to hide the

complexity of state management and service chaining. Fig. 9

presents the APIs. Next, we introduce them in detail.

State management. We design four APIs for NF state

storage and handling. The create table function creates a new

table in shared memory for state storage. Developer needs to

indicate the category of state stored in the table by setting



/ / STATE STORAGE AND HANDLING
create_table(table, flags);
get_state(table, key);
put_state(table, key, value);
delete_state(table, key);
flags = per-flow | global | read | write |

[release | eventual]

/ / EXTRA HANDLING FOR GLOBAL/WRITE STATE
split(table, key);
merge(table, key);
update(table, key);
timer(table, key, timeout);
trigger(table, key);

/ / SERVICE CHAINING FOR DYNAMIC SFC
chain(nf1, nf2, ...);
distribute(nf1, nf2, ..., selector);
aggregate(nf1, nf2, ...);

Fig. 9: Programming abstraction in Serpens

flags, including per-flow, global, read and write. Further, if

the flag is global | write, guaranteed consistency for

the state, including release and eventual, should be indicated.

The get state , put state and delete state functions provide

operations of state access, update and deletion.

For global/write state, extra APIs, including split, merge
and update functions, are called to split, merge or update

them when NF scaling out/in or state update is required. To

relieve NF development burden, we provide default operations.

For release consistency, split function separates the state into

two sub-states and update function equally splits available

resource by default. And for eventual consistency, split func-

tion copies the state into two replications and update function

simply adds state value by default. Specifically, update func-

tion could be called either on time via a timer function (e.g.,

Monitor periodically summing up host statistics) or on demand

via a trigger function (e.g., NAT adjusting available IPs/Ports

when the IPs/Ports of an instance are exhausted).

Service chaining. We provide three APIs to support service

chaining in Serpens. The chain function is used to describe

the desired NFs in an SFC and their execution order in a se-

quence. The distribute function is used to describe branches.

This function takes the downstream NFs as input, as well as a

user-defined selector function to describe which NF the packet

should be distributed according to the processing result of the

upstream NF. The aggregate function merges packets from

multiple NFs and takes the merged NFs as input.

IV. IMPLEMENTATION AND EVALUATION

A. Implementation

We have developed a prototype of Serpens based on

DPDK [26], and Fig. 10 shows the detailed implementation

upon a cluster of servers. The implementation is basically

consistent with existing serverless platforms. Here, we mainly

describe the routing system and instance startup strategy in

Serpens, which are different from existing platforms.

1) Routing system: We introduce a Router in each server

to deliver packets and achieve dynamic packet forwarding to

Server #0 Server #N 

Gateway Router

SFC
Mapping

Routing
Table

Router

Routing
Table

VXLAN

…

Instance
Manager
Instance

#1

Instance
#M

…

State
Manager

Shared
Memory
(States)

Controller Control
DataTasks

Fig. 10: Implementation of Serpens

corresponding instances according to its Routing Table. On

receiving packets, the gateway tags their triggered SFC on

each packet (DPDK provides a 64-bit metadata for tagging).

Then, the router forwards packets against the SFC tag. If mul-

tiple instances are launched for an SFC, other fields (e.g., 5-

tuple) could be matched to distribute packets among instances.

Thus, when launching or destroying instance on demand, the

controller needs to update the corresponding Routing Tables

to ensure consistent packet delivery. To maintain compatibility

with current network, we leverage the VXLAN [27] to forward

packets among different servers and tag the triggered SFC on

reserved field in VXLAN header.
2) Instance startup strategy: We introduce an Instance

Manager in each server to launch or destroy instances on

demand. Considering the high startup latency of ”cold” start

launching approach, we maintain a ”warm” instance pool

in advance. To reduce the unnecessarily resource occupation

with idle instances, we adopt a common practice by reusing

launched instances by keeping them ”warm” for a period of

time. Fig. 8(a) shows the layout of instances. To save resources

and share CPU cycles, the Chaining Runtime actively sleeps

during idle time and is woken up by router if new packets

arrive. However, router sending signals for every packet or

massive accumulated packets could either lead to significant

resource overhead or long waiting time. In our current imple-

mentation, we choose a moderate number size of packets (128)

and it can be adjusted at runtime according to the requirement

of users.
To evaluate the performance of Serpens, we implement

five NFs including FW (Firewall, performing 5-tuple hash

matching on black/white lists), NAT (allocating IPs/Ports for

new flows and modifying packet header for existing flows),

MON (Monitor, maintaining exhaustive flow and host statis-

tics), IDS (performing signature matching on public patterns)

and VPN (encrypting packets based on AES-128).
Experimental setup. Currently, we deploy Serpens on a

testbed of four servers. Two servers run the deployed NFs

and each is equipped with two Intel Xeon E5-2650 v4 CPUs

(2.2GHz, 12 physical cores), 128GB total memory (DDR4,

2400MHz, 16GB x8) and one dual-port 10G NICs (Intel

X520-DA2). The other two servers run the gateway and packet

generator, each is equipped with two Intel Xeon E5-2620

v3 CPUs (2.4GHz, 12 physical cores), 128GB total memory

(DDR4, 2133MHz, 16GB x8) and one dual-port 10G NICs
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Fig. 11: Performance improvement of state localization

(Intel X520-DA2). The packet generator is based on DPDK

and directly connected to the gateway. It sends and receives

packets to measure the end-to-end latency and throughput.

The servers running gateway and deployed NFs are connected

through an ethernet switch (10Gbps per port, 24 ports). All

servers run Ubuntu 14.04 (kernel 4.4.0) and use DPDK 18.11

for networking I/O.

Evaluation goals. We evaluate Serpens with the following

goals: (1) the performance improvement of state localization

and scaling effect of performance fluctuation avoidance strat-

egy (§IV-B); (2) the performance of different NF execution

models for both local and remote state access (§IV-C); (3) the

benefit from new service chaining approach (§IV-D); and (4)

the end-to-end performance improvement for NFs and SFCs

over existing serverless platforms (§IV-E).

B. State Management

Benefits from state localization To demonstrate the perfor-

mance improvement of state localization in Serpens, we

compare it with remote state access in existing serverless

platforms. For the remote state access, we use Redis [21],

a popular key-value store, to store NF state and locate it at

the same server with NF instances to avoid additional latency

on physical network. Besides, we aggregate multiple state

access requests into a single one to optimize throughput. For

NF execution, we adopt the kThread pool model to reduce

launching time. We vary the batch size of packets and measure

the performance of different NFs.

Fig. 11(a) shows the throughput improvement of local state

access over remote state access. From this figure, we can

observe significant throughput improvement, an average of

10.6×, 8.7×, 19.1×, 5.5× and 3.3× for FW, NAT, MON,

IDS and VPN, respectively. Besides, we can see that MON

improves the most than other NFs, this is because MON has

frequent state access, thus occupies more time on remote state

access. Fig. 11(b) shows the average latency reduction under

30% of the maximum throughput. We also observed significant

latency reduction, an average of 86.1%, 87%, 90.9%, 62% and

53.1% for FW, NAT, MON, IDS and VPN, respectively. Here,

we use Linux kernel based TCP stack for Redis communica-

tion, which could become the performance bottleneck under

high-speed packet rate and magnify the overhead of remote

state access. A common optimization is leveraging user space

TCP stack [28] or RDMA [29] (crossing servers). However,

as reported in [18], even with them, the additional remote

access latency is inevitable and not ignorable.
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Performance fluctuation avoidance strategy. To demonstrate

the benefit of performance fluctuation avoidance strategy in

Serpens, we compare it with state migration based solution

(e.g., OpenNF [17]). Here, we do not compare Serpens with

solution that depends on remote state access to avoid state

migration, e.g., StatelessNF [18], due to their low performance

(as evaluated above). We choose NAT as our evaluated NF

since it has global/write state which needs to be separated

during scaling. We first launch an instance for this NF and

send 1 Mpps traffic with 1k concurrent flows. Then we launch

a new instance at the same server and migrate half flows to it.

Fig. 12 shows the performance changes during scaling. Since

both approaches could migrate flows between instances in a

short time, we only show the throughput changes of the two

instances in Serpens to demonstrate its effective at balancing

load. However, Serpens almost incurs no latency variation

during scaling while the migration based approach leads to a

high latency spike.

C. NF execution

NF execution models for local state access. We evaluate

the end-to-end performance of different NF execution models

(discussed in § III-B). We choose Firewall as our evaluated

NF and vary execution models. Fig 13(a) shows the throughput

of these approaches with different batch sizes. We can see

that the function call approach achieves the highest throughput

and outperforms than others by 1.4× ∼ 3442.3×. Fig 13(b)

shows the average latency with varying batch size, which is

also measured with 30% of the maximum throughput. We can

see a similar result as throughput in latency, with an average

reduction of 99.8%, 95.4%, 66.5%, 28.7% and 80.1%, respec-

tively. We can also observe that with batch size increasing,

the throughput of other models increases accordingly, and
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even some approaches could be very close to our approach

(e.g., kThread pool). This is because their launching overhead

can be amortized by batching more packets with trading off

latency. However, our approach could achieve high throughput

and low latency simultaneously. Besides, the performance of

uThread Pool becomes worse with batch size increasing, that

is because its scheduling policy (i.e., Round Robin) is not

suitable for packet processing [30]. However, even with a

perfect scheduling policy, it still cannot avoid the overhead

caused by synchronization and context switch between threads.

NF execution models for remote state access. However, our

execution model may be not suitable for remote state access

because of long blocking time. To evaluate this, we use the

same evaluating method as the above. Fig 14(a) and Fig 14(b)

show the throughput and average latency with varying batch

size. We can see, the function call approach performs poorly

at throughput as well as latency, and thus cannot be applied

to remote state access. In contrast, the thread pool is more

suitable for remote state access because of its high concurrency

and relatively low launching overhead.

D. Service chaining

Serpens model for service chaining. Serpens model

could improve performance by avoiding queuing delay and

context switch. To prove this demonstration, we compare it

with the available service chaining approaches in existing

serverless platforms (shown in Fig. 4). To ensure equal re-

source consumption, we place all NFs of an SFC at the same

CPU core. We chain multiple Firewalls to form an SFC and

vary its length to measure performance. Fig 15(a) shows their

throughput with varied length. We can see that our approach

(based on Serpens model) achieves the best throughput in all

cases and outperforms than others by 1.7× ∼ 5.1×. Fig 15(b)

shows their average latency. We can also observe that the

average latency can be reduced from 24.5% to 62.3%.
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E. End-to-end performance improvement

To demonstrate the performance improvement of Serpens
over existing serverless platforms, we compare it with three

popular open-source platforms, including Fission [13], Open-

FaaS [12] and SAND [16]. These platforms are developed

with Java or Go, which is not efficient for packet processing.

Therefore, we rewrite their packet I/O with DPDK and use

C to develop NFs. Specifically, all these platforms leverage

a storage service (local or remote) to store state. For NF

execution model, Fission and OpenFaaS launch NFs by load-

ing binary files, SAND launches NFs by forking processes.

For SFC support, Fission adopts the executor based chaining

approach (Fig. 4(a)), OpenFaaS adopts the gateway based

chaining approach (Fig. 4(b)), and SAND adopts the direct

chaining approach (Fig. 4(c)).

Performance improvement for NFs. Fig 16(a) shows the

throughput of different platforms with various NFs. We can

see Serpens improves throughput for all NFs. For example,

comparing with SAND that achieves the best throughput in

existing serverless platforms, Serpens can outperform it by

103.3×, 88.5×, 58.8×, 24.8× and 5.9× for measured NFs,

respectively. Fig 16(b) shows their average latency. We can

observe a similar result, which is 97.1%, 96.6%, 96.1%, 79.4%

and 76.7% latency reduction compared with SAND (also the

best existing platform). We can also observe that if an NF

becomes complex, the performance improvement decreases

accordingly. That is because the packet processing time oc-

cupies more portion of the total time and our optimization

becomes less critical. However, even with the most complex

NF (e.g., VPN), Serpens still improves throughput by 5.9×
and reduces latency by 76.7% over SAND.

Performance improvement for SFCs. We chain Firewall,

Monitor and NAT to form an SFC. Fig 17(a) and Fig 17(b)

shows the throughput and average latency of this SFC on

different platforms. We can see that even compared with



the highest performance of existing platform (the SAND

platform), Serpens can still improve throughput by 74.2×
and reduce latency by 97.1% .

V. RELATED WORK

High-performance NFV platforms. Many NFV platforms

have been proposed to enable high-performance packet pro-

cessing. For example, NetVM [14] consolidates multiple NFs

into one server and accelerates packet delivery among NFs

through shared memory. SoftNIC [31], NetBricks [15] aban-

dons virtualization technology and run NFs in a single process

to improve performance. Recently, many researches propose to

run NFs on public cloud to relieve the management burdens

and leverage the economies of elastic scaling [7]. However,

none of them focus on designing a special-purpose cloud

aware platform to support NFV. Serpens is the first to

introduce serverless computing to NFV and design a high-

performance platform to run NFs and SFCs.
Serverless computing. Existing serverless computing re-

searches can be divided into two categories. This first cate-

gory aims to support various applications by utilizing server-

less computing [7]–[9]. For example, Jonas et al. [8] target

at supporting distributed computing on serverless platform.

Fouladi et al. [9] manage to support video processing on AWS

Lambda. Singhvi et al. [7] evaluated that NFV is not suitable

to run on the current AWS Lambda and design a framework for

NF executions on AWS Lambda. The second category attempts

to improve current serverless platforms for further purposes.

Boucher et al. [6] reduces launching time by language-based

isolation. Pocket [20] promotes serverless analytics by design-

ing an elastic ephemeral storage. SOCK [22] reduces process

initialization time in serverless platforms by its optimized

container technology. SAND [16] distinguishes itself by its

serverless platform designed for complex applications, but our

evaluation has shown that it still incurs high performance over-

head for NFV. Overall, none of them are specifically designed

for NFV. Serpens address the performance problem and

design a special-purpose serverless platform for NFV.

VI. CONCLUSION

We have presented Serpens, a high-performance server-

less platform for NFV. Starting from identifying three perfor-

mance problems in existing serverless platforms, Serpens
proposes two novel designs to improve performance, includ-

ing state localization and resource-NF decoupling. Moreover,

Serpens provides a programming abstraction to ease NF

development and SFC chaining. Our evaluations have demon-

strated that Serpens can significantly improve the perfor-

mance of NFs and SFCs over the state-of-the-art serverless

platform.
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