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Virtualized network functions (VNFs) are the basic units 
of network function virtualization (NFV). Currently, the 

most common implementation mode of VNF is running each 
function on a standalone virtual machine (named VM-VNF), 
which allows great flexibility. However, the flexibility comes 
with considerable compromises. First, VM carried functions 
may introduce significant performance issues (e.g., latency, 
throughput). Especially if VNFs should process data packets 
(e.g., firewall, network address translation), these problems 
will be worse. However, due to the VNFs’ lack of a unified 
paradigm, it is very hard, if not impossible, to improve the 
performance of all the VNFs through dedicated optimization 
or hardware acceleration. Second, the NFV management and 
orchestration plane (MOP) actually does not have an explicit 
view into the VNFs for what they really execute at runtime. 
The VNFs can conflict with each other and may introduce 
errors. However, the MOP has a lack of mechanisms to effec-
tively detect and resolve the conflicts and errors [1]. 

Software defined networking (SDN) can be used to imple-
ment VNFs. Whenever a VNF is implemented based on SDN, 
the VNF could be composed by a virtualized data plane device 
and an SDN controller application. The controller applica-
tion generates rules to apply to the data traffic, and the data 
plane device processes packets based on the rules. Specifically, 
implementing VNF with SDN (named SD-VNF) can make up 
for the drawbacks of VM-VNF. First, the rules on the virtual-
ized data plane device can be implemented by specially opti-
mized flow tables or even hardware switches. Hence, the data 
plane performance can be improved. Second, the centralized 
SDN controller is capable of checking errors or conflicts of 
various VNFs at runtime.

In theory, through leveraging the capability of the control-

ler, the SD-VNF can implement any function. However, the 
majority of network functions, other than the functions’ gen-
erating static rules, require invoking the controllers frequent-
ly. Hence, the controllers and the channel between the data 
plane and the control plane will become the bottlenecks of 
the functions. For example, even only when implementing a 
stateful firewall, the packets should be sent to the controller to 
keep the state of TCP connection or UDP pseudo connection. 
We believe this problem originates from the limitation of the 
expression capability of the SDN data plane. As a representa-
tive technique of SDN, OpenFlow [2] introduces a “match-ac-
tion” paradigm for the SDN data plane where programmers 
could specify a flow through a header matching rule along with 
processing actions applied to matched packets.

OpenFlow’s simple “match-action” abstraction brings great 
challenges to support NFV, which requires advanced packet 
handling. First, the OpenFlow data plane only provides limited 
support for stateful packet processing and is unable to monitor 
flow states without the involvement of the controller [3]. Heav-
ily relying on the controller to maintain all packet states could 
give rise to both scalability and performance issues due to the 
associated processing delay and the control channel bottleneck 
between the controller and switches [4]. Second, OpenFlow 
targets fixed-function switches that recognize a predetermined 
set of header fields and processes packets using a small set of 
predefined actions. The header fields and actions cannot be 
extended flexibly to meet diverse application requirements. 
The limited expressivity of OpenFlow compromises the pro-
grammability and capability of the SDN data plane [5, 6].

To address the above-mentioned challenges and require-
ments, we introduce an innovative stateful data plane abstrac-
tion (SDPA) to enable stateful processing in the SDN data 
plane. We try to close the gap between the requirement and 
the capability, while keeping the advantages of the current SDN 
data plane. We found, however, that a stateful data plane is 
required to cover all the functions. In contrast to the simple 
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“match-action” paradigm of OpenFlow, we propose a new 
“match-state-action” paradigm for the SDN data plane. In this 
paradigm, state information can be maintained in the SDN data 
plane without heavy involvement of SDN controllers. In partic-
ular, we add a co-processing unit named forwarding processor 
(FP) to SDN switches, and design instructions and flow tables in 
the FP to manipulate state information in the SDN data plane.

SDN envisions intelligent and centralized controllers gov-
erning the forwarding behavior of dumb and low-cost switches. 
However, are the dumb switches a strategic choice in reality? 
Some dynamic applications, which only involve local states 
inside single links or switches, are unnecessarily centralized for 
easy management and programmability. Indeed, some level of 
control logic in switches could be handled just based on local 
states inside the device itself, which can efficiently offload the 
centralized controller from decisions.

The article makes the following contributions:
• We propose the novel stateful data plane abstraction (SDPA) 

to support NFV. This architecture proposes a new “match-
state-action” paradigm to support various functions that need 
to process state information in the SDN data plane.

• We design a co-processing unit for SDN switches along with 
instructions and state tables to support stateful processing 
in the SDN data plane. Through adding intelligence to SDN 
switches, the programmability and flexibility of the SDN 
data plane can be greatly enhanced.

• We implement a typical network function, a stateful firewall, 
based on the proposed SDPA architecture, and demonstrate 
how our approach can effectively support VNFs.

Stateful Data Plane Abstraction
Figure 1 depicts several architectures for SDN support of NFV. 
Figure 1a is derived from [7]. In this architecture, virtualized 
functions run on local servers while only NFV orchestration is 
implemented as an app running on the controller. In this archi-
tecture, OpenFlow-enabled SDN brings benefits to NFV.

In Fig. 1b, most of the network functions are running on 
top of the controller. The switches are OpenFlow switches. 
The controller communicates with switches through OpenFlow 
protocol. This model attempts to support NFV using the SDN 
architecture. We call it OpenFlow-enabled SDN-based NFV. 
However, some network functions, other than the functions 
generating static rules, require invoking the controllers fre-
quently. Hence, the controllers and the channel between the 
data plane and the control plane will become the bottlenecks. 
This model may incur performance issues such as forwarding 
latency and throughput. Another problem with the architecture 
of Fig. 1b is the limited functionality that OpenFlow provides.

Figure 1c shows how SDPA architecture supports NFV. We 
call it SPDA-enabled SDN-based NFV. In this architecture, 
we use SDPA switches that can process state information in 

the data plane. Each function is divided into two parts. One 
part is a stateful processing unit inside SDPA switches. The 
other is the associated function running on the controller. This 
architecture is compatible with OpenFlow or SDN-enabled 
switches. And the bottlenecks of controllers and the channel 
between the data plane and the control plane can be avoid-
ed in this architecture. Some special network functions that 
cannot easily be implemented in SDPA switches can still be 
placed on local servers connected to SDPA switches, similar to 
the mechanism in Fig. 1a. 

Concretely, we design a co-processing unit in SDN switch-
es, the FP, which can be implemented by CPU, NPU, and so 
on, as shown in Fig. 2. Each stateful processing unit in the 
data plane is composed of a state table (ST), a state transition 
policy table, and a flow table. When implementing stateful 
network applications such as stateful firewalls, input packets 
are processed according to related state information. The ST 
is used to maintain the state of each TCP connection or UDP 
pseudo connection, and it is dynamically updated according 
to the coming packets (e.g., the TCP flag) or internal/exter-
nal events. The transition of TCP connection state can be 
described using a finite state machine. And the state transi-
tion policy table is used to keep the finite state machine of 
TCP connection. Through matching the state transition policy 
table, the next state of the TCP connection and corresponding 
actions are determined.

All the stateful processing units are composed together in 
parallel or sequentially according to application requirements. 
Through extended OpenFlow instructions, flows or packets 
are directed from the OpenFlow pipeline to the FP. The FP 
realizes more complex processing of flows or packets through 
instructions. We design STs for the FP, in which the FP main-
tains the associated state of flows or packets. 

A New Paradigm for the SDN Data Plane
In SDN architecture, some VNFs need to process state infor-
mation in the data plane. OpenFlow’s “match-action” para-
digm is simple and capable enough to support many data plane 
functions, but provides limited support for stateful processing 
due to the lack of state-related modules in the pipeline of the 
OpenFlow date plane. In essence, the limited “match-action” 
paradigm seems to be an involuntary outcome of being amena-
ble to high-performance low-cost implementations, without 
taking into account a rich set of complicated network ser-
vices, such as stateful firewalls, load balancing, FTP, intrustion 
detection/prevention system (IDS/IPS), NAT, and medium 
access control (MAC) learning.

We propose a new “match-state-action” paradigm for the 
SDN data plane, as shown in Fig. 3. In this paradigm, we add 
STs and state operating instructions to enable stateful pro-
cessing in the SDN data plane. The STs are used to keep state 

Figure 1. The architectures of how SDN supports NFV: a) OpenFlow-enabled SDN benefit for NFV; b) OpenFlow-enabled SDN-
based NFV; c) SDPA-enabled SDN-based NFV.
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information of packets, flows, or connection. The state operat-
ing instructions are used to maintain state information. With 
this new paradigm, state processing can be programmed by 
SDN applications, and the state information can be main-
tained in the SDN data plane. Thus, based on this paradigm, 
stateful processing can be efficiently supported in the data 
plane without conveying all packets to the controller for state 
information maintenance.

Forwarding Processor
An FP maintains the state of flows or packets. Also, it can 
modify the metadata of packets, and initiate or delete ST 
entries asynchronously. An FP can receive and react to incom-
ing events, such as configuration change, state change, or just 
packets, from both the controller and the switch. The control-
ler can initiate, read, and modify the ST or state transition 
table in the FP. The events mean changes of network state, 
such as a new coming packet, connection interruption, net-
work congestion, and so on.

We add a GOTO_ST(n) instruction in the data plane, which 
is used to direct packets from an OpenFlow pipeline to ST n in 
an FP. The packet is directed from the FP back to flow table 
m through the instruction GOTO_FT(m). We design instruc-
tions for stateful processing in an FP. These instructions can 
be flexibly extended to meet application requirements in the 
data plane. The instructions can be divided into the following 
categories:

• Control instructions: They are used to direct packets transfer-
ring between the controller, flow tables, and FP, including 
GOTO_ST(n) and GOTO_FT(m).

• Processing instructions: They are used for FP to process flows 
or packets.

• State operating instructions: They are used to operate the ST.
• Arithmetic instructions: They are used to perform arithmetic 

operations.
• Logical instructions: They are used to perform logical opera-

tions.
The controller and FP communicate with each other 

through an extended OpenFlow protocol. It is mainly used 
for the operation of state information in the data plane, such 
as initialization of the ST and state transition table. The con-
troller has full control of the FP. We design two new message 
types, controller-to-FP messages and asynchronous messages. 
Each of them contains multiple sub-types.

State Table
State tables are used to maintain state information in the SDN 
data plane. Since different protocols may need to maintain 
different state information, each protocol has a corresponding 
ST. State tables are initiated by the controller. When an appli-
cation requires stateful processing, the controller instructs the 
FP to initiate corresponding STs through an extended instruc-
tion INIT. The controller tells the FP explicitly which domains 
the ST should have. State tables are dynamically loaded. The 
match fields of STs may be different for various applications. 
One stateful application only has one ST and one state tran-
sition policy table. The entries of an ST could be effectively 
limited by the expiry mechanism.

The state information is updated according to incoming 
packets or internal/external events, and maintained in the data 
plane. The state information can also be uploaded to the con-
troller through the asynchronous messages so that the control-

Figure 2. Detailed SDPA architecture.
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ler can keep the global state information of the network. When 
the state information is updated in the FP, it can be sent to 
the controller to retain consistency. Figure 2 shows examples 
of state tables. The “match fields” domain in an ST refers to 
the match fields of packets. It is flexible and extensible. For 
example, it can store connections possibly represented by both 
source and destination addresses. The “state” domain in an 
ST is used to record the state information of flows or packets. 
And the “instructions” domain is utilized to record associat-
ed processing instructions to process packets and update the 
states. Those instructions can be divided into state operating 
instructions and packet processing instructions. 

State Transition Table
We design a state transition table to support the specification of 
state update policies with respect to a specific connection-orient-
ed protocol. Each ST should be accompanied by a state transition 
table. The state transition policy tables may also be different for 
different applications. The entries of a state transition policy table 
are very limited. Taking a stateful firewall as an example, the 
state transition policy table only has a dozen entries.

A state transition table specifies the transition policies indi-
cating how the states transfer according to the specific proto-
col. A state transition table contains four different domains, 
including state, event, and next state. State transition tables are 
issued to an FP by the controller.

Protocol Filter Table
As a general architecture, SDPA can support a variety of 
applications and protocols. Since different applications should 
maintain different state, each protocol used by the applications 
should have a specific ST. The protocol filter table should be 
established in advance in the controller to determine to which 
protocol the connection belongs. An example of protocol filter 
table is shown in Fig. 2 where the match fields domain refers 
to the matching domains, and the protocol domain refers to 
which protocol the filtered packet is using.

When a matching in the protocol filter table succeeds, a cor-
responding flow entry is issued by the controller carrying the 
extended instruction GOTO_ST(n). The parameter n refers to 
the ST ID to which the packet should be sent. At the same time, 
corresponding ST domain information and a state transition table 
are issued to the FP for stateful processing in the data plane.

SDN Switch Architecture Supporting SDPA
We design an SDN switch architecture supporting SDPA as 
shown in Fig. 4. We add the FP and ST to the SDN switch 
architecture to maintain the state information in the data 
plane. We also add a policy module, which is used to adjust 
the processing policies. This module includes the state transi-
tion table discussed above.

The new architecture consists of the following functional 
modules.

Network Interface: Directly connected to the physical layer.
Its main functions include receiving/sending packets and pack-
et processing. It works in the physical layer and the link layer.

Forwarding Engine: Responsible for determining the packet 
forwarding paths. It parses the received packet headers and 
looks up the forwarding table to obtain the destination ports 
for the forwarding operation.

Forwarding Processor: It interacts with the controller and 
is responsible for the maintenance and management of state 
information in the data plane.

Forwarding Table: Plays the role of connecting the entire 
system. It can be updated according to the information issued 
by the controller and returns associated forwarding instruc-
tions to the forwarding engine.

State Table: It is used to maintain state information during 
the processing procedure in the data plane.

Policy Module: Used to adjust and control the processing 
policies, such as the state transition policy and packet pro-
cessing policy, of the switch. The policies are issued by the 
controller.

Use Case and Evaluations
To demonstrate the feasibility and efficiency of our approach, 
we implemented a stateful firewall, a typical VNF, based on 
the SDPA architecture and evaluated its performance.

Implementation of a Stateful Firewall
In our implementation, we extended Open vSwitch (OVS) [8] 
to support FP and used NOX [9] as the SDN controller, on 
which we developed a VNF, a stateful firewall. All our experi-
ments were performed in the Ubuntu 12.04 system running on 
a Dell OPTIPLEX 780 computer. The CPU of this computer 
is Intel® Core™ 2 Duo Processor E7500 (2.93 GHz), and the 
internal memory is 3.21 GB. The network card is an Intel 10 
Gigabit Network Connection. We used IXIA [10] to generate 
and send original packets in our testbed environment.

We implemented the stateful firewall application based 
on the SDPA architecture, as shown in Fig. 1c, where an FP 
is used to maintain the state of TCP connections and UDP 
pseudo connections. The ST resides in the FP to record state 
information. The match fields domain consists of SIP, SPORT, 
protocol, DIP, and DPORT. The state domain contains Connec-
tion state, Sequence number, Acknowledge number, Idle timeout, 
and Hard timeout. The instructions domain includes state oper-
ating instructions and packet processing instructions.

Performance of Stateful Firewalls in SDPA Architecture 
against Stateful Firewalls in Traditional SDN Architecture: 
We conducted a contrast experiment to evaluate the efficiency 
of SDPA. We needed to evaluate the performance of process-
ing states in switches based on the SDPA architecture against 
processing states in the controller based on the traditional SDN 
architecture. We also developed a stateful firewall application 
based on the traditional SDN architecture, where the state 
information is maintained in the controller as shown in Fig. 1b. 

We tested the forwarding latency and the throughput in our 
experiment. As we can see from our experiment results, when 

Figure 4. SDN switch architecture supporting SDPA.
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packet size ranges from 64 to 1024 bytes, the average forward-
ing latency reduces more efficiently in SDPA architecture than 
that in the transitional SDN architecture as shown in Fig. 5a. 
In SDPA architecture, most of the packets can be processed 
according to the ST in local switches without being sent to the 
controller to match the firewall rules. Thus, the throughput 
increases a lot in SDPA architecture, as shown in Fig. 5b. 

Performance of Stateless Forwarding in SDPA Architecture 
vs. Traditional SDN Architecture: Since the SDPA architec-
ture is fully compatible with OpenFlow, SDPA can also sup-
port stateless processing just like OpenFlow. While performing 
stateless processing in the data plane, the average forwarding 
latency in the SDPA architecture is almost the same as that 
in the traditional SDN architecture, as shown in Fig. 5c. And 
the throughput in the SDPA architecture is almost the same 
as that in the traditional SDN architecture depicted in Fig. 5d.

Performance of Stateful Firewalls in SDPA Architecture 
vs. Stateless Firewalls in Traditional SDN Architecture: We 
compared our stateful firewall in the SDPA architecture with a 
stateless firewall in the traditional SDN architecture. Regarding 
the stateless firewall in traditional SDN architecture, only the 
first packet of a flow is sent to the controller to match firewall 
rules. Then the controller issues a new flow entry to the flow 

table. The subsequent packets of the flow are in turn directly 
matched against the flow table. As can be seen in Fig. 5e, the 
average forwarding latency of the stateful firewall in the SDPA 
architecture is slightly increased. The processing overhead is 
acceptable, and the throughput rate is nearly unchanged as 
shown in Fig. 5f.

Performance of Stateful Firewall in SDPA Architecture vs 
Stateful Firewall Netfilter/iptables: Netfilter/iptables [11] is a 
user-space application program that allows a system administra-
tor to configure the tables provided by the Linux kernel firewall, 
and the chains and rules it stores. Nevertheless, our stateful fire-
wall is an application running on top of a controller to enable 
effective state information processing in SDN-based networks. 
We selected a 10 gigabit network card and used a 64-byte pack-
et to conduct our experiment. As shown in Fig. 5g, the total 
forwarding latency of stateful firewalls in the SDPA architecture 
is slightly higher than that of netfilter/iptables. The packet loss 
rates of both kinds of firewalls are almost the same. 

Testing the Scalability of State Tables
We performed a test on the scalability of STs and the influ-
ence of forwarding efficiency under different sizes of STs. We 
also used 64-byte packets to conduct our experiment. As the 

Figure 5. Performance evaluation and comparison: a) forwarding latency; c) forwarding latency; e) forwarding latency;  
b) throughput; d) throughput; f) throughput; g) total forwarding latency; h) forwarding latency; and i) throughput.
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ST size increases, the forwarding efficiency does not noticeably 
deteriorate. Since the ST is implemented based on SRAM 
in our experiment, the size of the ST can still be increased 
theoretically. As shown in Fig. 5h, when the size of an ST 
increases from 200 to 500,000, the network forwarding latency 
does not increase significantly. And the network throughout 
shows almost no change, as shown in Fig. 5i. This indicates 
that maintaining state in the data plane has little impact on 
forwarding latency and throughput.

Related Work
Some research efforts have recently been devoted to extending 
the OpenFlow data plane abstraction [12–14]. Bosshart et al. 
[12] pointed out that the rigid table structure of current hard-
ware switches limits the scalability of OpenFlow packet process-
ing to match on a fixed-set of fields and to a small set of actions. 
By comparison, we strive to enhance the programmability of 
the data plane by adding a co-processing unit in SDN switches. 
In addition, Bianchi et al. [13] proposed a new abstraction to 
formally describe a desired stateful processing of flows inside 
the SDN data plane based on extended finite state machines. 
Moshref et al. [14] proposed flow-level state transitions as a 
new switch primitive for SDN. They just put forward a prelimi-
nary design, but did not provide concrete implementations and 
evaluations. In contrast, we present a detailed technical scheme 
for realizing our SDPA architecture in the SDN data plane to 
support NFV, and the relationships and interactions between 
the state tables and flow tables are articulated. We implemented 
a typical VNF, a stateful firewall, based on our SDPA architec-
ture along with convincing experimental results.

Conclusion and Future Work
Software defined networking techniques can be used to imple-
ment VNF. However, OpenFlow-enabled SDN-based NFV 
still has performance issues due to the bottlenecks of the con-
troller, and the channel between the control plane and the 
data plane. OpenFlow only provides a simple match-action 
paradigm and lacks the function of stateful processing for the 
SDN data plane, which limits its support for advanced network 
applications. In this article, we have put forward SDPA to 
support NFV. We have designed a co-processing unit, the FP, 
which can help manipulate states in the SDN data plane. The 
feasibility and efficiency of our approach are demonstrated 
through the implementation of a stateful firewall. Our imple-
mentation and evaluations showed that the SDPA architecture 
has the following advantages:
• VNFs that need to maintain state information can be sup-

ported well in the SDPA architecture, and the forwarding 
efficiency can be improved efficiently.

• The SDPA architecture is fully compatible with OpenFlow. 
Applications that do not need to maintain state information 
in the data plane can be fully supported as well without 
causing additional processing overhead.

• The performance of stateful processing in the SDPA archi-
tecture is close to that of stateless processing in the tradi-
tional SDN architecture.

• The SDPA architecture enhances the programmability and 
flexibility of the data plane significantly.
For future work, we will develop more network applications, 

such as DNS reflection attack defense, fast reroute, and NAT, 
based on the SDPA architecture to validate the versatility and 
availability of SDPA. We will also develop an SDPA hardware 
prototype system based on NetFPGA[15] and further evaluate 
the performance of SDPA architecture. Adding some intelli-
gence into switches may increase their complexity. Thus, we 
will investigate an optimized solution to simplify our design.
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