
40 IEEE Network • May/June 20160890-8044/16/$25.00 © 2016 IEEE

Virtualized network functions (VNFs) are the basic units
of network function virtualization (NFV). Currently, the

most common implementation mode of VNF is running each
function on a standalone virtual machine (named VM-VNF),
which allows great flexibility. However, the flexibility comes
with considerable compromises. First, VM carried functions
may introduce significant performance issues (e.g., latency,
throughput). Especially if VNFs should process data packets
(e.g., firewall, network address translation), these problems
will be worse. However, due to the VNFs’ lack of a unified
paradigm, it is very hard, if not impossible, to improve the
performance of all the VNFs through dedicated optimization
or hardware acceleration. Second, the NFV management and
orchestration plane (MOP) actually does not have an explicit
view into the VNFs for what they really execute at runtime.
The VNFs can conflict with each other and may introduce
errors. However, the MOP has a lack of mechanisms to effec-
tively detect and resolve the conflicts and errors [1].

Software defined networking (SDN) can be used to imple-
ment VNFs. Whenever a VNF is implemented based on SDN,
the VNF could be composed by a virtualized data plane device
and an SDN controller application. The controller applica-
tion generates rules to apply to the data traffic, and the data
plane device processes packets based on the rules. Specifically,
implementing VNF with SDN (named SD-VNF) can make up
for the drawbacks of VM-VNF. First, the rules on the virtual-
ized data plane device can be implemented by specially opti-
mized flow tables or even hardware switches. Hence, the data
plane performance can be improved. Second, the centralized
SDN controller is capable of checking errors or conflicts of
various VNFs at runtime.

In theory, through leveraging the capability of the control-

ler, the SD-VNF can implement any function. However, the
majority of network functions, other than the functions’ gen-
erating static rules, require invoking the controllers frequent-
ly. Hence, the controllers and the channel between the data
plane and the control plane will become the bottlenecks of
the functions. For example, even only when implementing a
stateful firewall, the packets should be sent to the controller to
keep the state of TCP connection or UDP pseudo connection.
We believe this problem originates from the limitation of the
expression capability of the SDN data plane. As a representa-
tive technique of SDN, OpenFlow [2] introduces a “match-ac-
tion” paradigm for the SDN data plane where programmers
could specify a flow through a header matching rule along with
processing actions applied to matched packets.

OpenFlow’s simple “match-action” abstraction brings great
challenges to support NFV, which requires advanced packet
handling. First, the OpenFlow data plane only provides limited
support for stateful packet processing and is unable to monitor
flow states without the involvement of the controller [3]. Heav-
ily relying on the controller to maintain all packet states could
give rise to both scalability and performance issues due to the
associated processing delay and the control channel bottleneck
between the controller and switches [4]. Second, OpenFlow
targets fixed-function switches that recognize a predetermined
set of header fields and processes packets using a small set of
predefined actions. The header fields and actions cannot be
extended flexibly to meet diverse application requirements.
The limited expressivity of OpenFlow compromises the pro-
grammability and capability of the SDN data plane [5, 6].

To address the above-mentioned challenges and require-
ments, we introduce an innovative stateful data plane abstrac-
tion (SDPA) to enable stateful processing in the SDN data
plane. We try to close the gap between the requirement and
the capability, while keeping the advantages of the current SDN
data plane. We found, however, that a stateful data plane is
required to cover all the functions. In contrast to the simple

Abstract
A recent trend known as NFV attempts to replace dedicated hardware appliances
with generic compute, storage, and network resources. NFV based on SDN can
extend programmability and flexibility features of advanced network functions.
Many of these network functions, however, need concrete state information to effec-
tively process network flows. However, OpenFlow only provides a simple “match-ac-
tion” paradigm and lacks the function of stateful processing in the SDN data plane,
which limits its support of advanced network functions. Heavily relying on SDN
controllers for all state maintenance incurs both scalability and performance issues.
In this article, we propose a novel SDPA for the SDN data plane. A co-processing
unit, the forwarding processor, is designed for SDN switches to manage state infor-
mation through new instructions and state tables. We demonstrate the practicality
and feasibility of our approach through a proof-of-concept implementation of VNFs,
a stateful firewall based on SDPA. Experimental results show that VNFs which need
to process state information can be supported well by the SDPA architecture, and
the forwarding efficiency is improved.

Supporting Virtualized Network Functions
with Stateful Data Plane Abstraction

Jun Bi, Shuyong Zhu, Chen Sun, Guang Yao, and Hongxin Hu

Jun Bi, Shuyong Zhu, Chen Sun, Guang Yao are with Tsinghua University;
Hongxin Hu is with Clemson University.
The corresponding author is Jun Bi.

IEEE Network • May/June 2016 41

“match-action” paradigm of OpenFlow, we propose a new
“match-state-action” paradigm for the SDN data plane. In this
paradigm, state information can be maintained in the SDN data
plane without heavy involvement of SDN controllers. In partic-
ular, we add a co-processing unit named forwarding processor
(FP) to SDN switches, and design instructions and flow tables in
the FP to manipulate state information in the SDN data plane.

SDN envisions intelligent and centralized controllers gov-
erning the forwarding behavior of dumb and low-cost switches.
However, are the dumb switches a strategic choice in reality?
Some dynamic applications, which only involve local states
inside single links or switches, are unnecessarily centralized for
easy management and programmability. Indeed, some level of
control logic in switches could be handled just based on local
states inside the device itself, which can efficiently offload the
centralized controller from decisions.

The article makes the following contributions:
• We propose the novel stateful data plane abstraction (SDPA)

to support NFV. This architecture proposes a new “match-
state-action” paradigm to support various functions that need
to process state information in the SDN data plane.

• We design a co-processing unit for SDN switches along with
instructions and state tables to support stateful processing
in the SDN data plane. Through adding intelligence to SDN
switches, the programmability and flexibility of the SDN
data plane can be greatly enhanced.

• We implement a typical network function, a stateful firewall,
based on the proposed SDPA architecture, and demonstrate
how our approach can effectively support VNFs.

Stateful Data Plane Abstraction
Figure 1 depicts several architectures for SDN support of NFV.
Figure 1a is derived from [7]. In this architecture, virtualized
functions run on local servers while only NFV orchestration is
implemented as an app running on the controller. In this archi-
tecture, OpenFlow-enabled SDN brings benefits to NFV.

In Fig. 1b, most of the network functions are running on
top of the controller. The switches are OpenFlow switches.
The controller communicates with switches through OpenFlow
protocol. This model attempts to support NFV using the SDN
architecture. We call it OpenFlow-enabled SDN-based NFV.
However, some network functions, other than the functions
generating static rules, require invoking the controllers fre-
quently. Hence, the controllers and the channel between the
data plane and the control plane will become the bottlenecks.
This model may incur performance issues such as forwarding
latency and throughput. Another problem with the architecture
of Fig. 1b is the limited functionality that OpenFlow provides.

Figure 1c shows how SDPA architecture supports NFV. We
call it SPDA-enabled SDN-based NFV. In this architecture,
we use SDPA switches that can process state information in

the data plane. Each function is divided into two parts. One
part is a stateful processing unit inside SDPA switches. The
other is the associated function running on the controller. This
architecture is compatible with OpenFlow or SDN-enabled
switches. And the bottlenecks of controllers and the channel
between the data plane and the control plane can be avoid-
ed in this architecture. Some special network functions that
cannot easily be implemented in SDPA switches can still be
placed on local servers connected to SDPA switches, similar to
the mechanism in Fig. 1a.

Concretely, we design a co-processing unit in SDN switch-
es, the FP, which can be implemented by CPU, NPU, and so
on, as shown in Fig. 2. Each stateful processing unit in the
data plane is composed of a state table (ST), a state transition
policy table, and a flow table. When implementing stateful
network applications such as stateful firewalls, input packets
are processed according to related state information. The ST
is used to maintain the state of each TCP connection or UDP
pseudo connection, and it is dynamically updated according
to the coming packets (e.g., the TCP flag) or internal/exter-
nal events. The transition of TCP connection state can be
described using a finite state machine. And the state transi-
tion policy table is used to keep the finite state machine of
TCP connection. Through matching the state transition policy
table, the next state of the TCP connection and corresponding
actions are determined.

All the stateful processing units are composed together in
parallel or sequentially according to application requirements.
Through extended OpenFlow instructions, flows or packets
are directed from the OpenFlow pipeline to the FP. The FP
realizes more complex processing of flows or packets through
instructions. We design STs for the FP, in which the FP main-
tains the associated state of flows or packets.

A New Paradigm for the SDN Data Plane
In SDN architecture, some VNFs need to process state infor-
mation in the data plane. OpenFlow’s “match-action” para-
digm is simple and capable enough to support many data plane
functions, but provides limited support for stateful processing
due to the lack of state-related modules in the pipeline of the
OpenFlow date plane. In essence, the limited “match-action”
paradigm seems to be an involuntary outcome of being amena-
ble to high-performance low-cost implementations, without
taking into account a rich set of complicated network ser-
vices, such as stateful firewalls, load balancing, FTP, intrustion
detection/prevention system (IDS/IPS), NAT, and medium
access control (MAC) learning.

We propose a new “match-state-action” paradigm for the
SDN data plane, as shown in Fig. 3. In this paradigm, we add
STs and state operating instructions to enable stateful pro-
cessing in the SDN data plane. The STs are used to keep state

Figure 1. The architectures of how SDN supports NFV: a) OpenFlow-enabled SDN benefit for NFV; b) OpenFlow-enabled SDN-
based NFV; c) SDPA-enabled SDN-based NFV.

NAT Load
balance

Stateful
firewall

Server

Hypervisor

NAT Load
balance

Stateful
firewall

Server

Hypervisor

(a) (b) (c)

NAT Load
balance

Stateful
firewall

North bound
interface

NFV orchestration

SDN
controller

SDPA
switch SDPA

SDPA

SDPA
switch

Host Host

OpenFlow
switch

OpenFlow
switch

Host Host

NAT Load
balance

Stateful
firewall

NAT Load
balance

Stateful
firewall

North bound
interface

NFV orchestration

OpenFlow
controller

North bound
interface

OpenFlow
controller

NFV orchestration

OpenFlow
switch

OpenFlow
switch

Server

Hypervisor

OpenFlow
switch

OpenFlow
switch

SDPA
switch

IEEE Network • May/June 201642

information of packets, flows, or connection. The state operat-
ing instructions are used to maintain state information. With
this new paradigm, state processing can be programmed by
SDN applications, and the state information can be main-
tained in the SDN data plane. Thus, based on this paradigm,
stateful processing can be efficiently supported in the data
plane without conveying all packets to the controller for state
information maintenance.

Forwarding Processor
An FP maintains the state of flows or packets. Also, it can
modify the metadata of packets, and initiate or delete ST
entries asynchronously. An FP can receive and react to incom-
ing events, such as configuration change, state change, or just
packets, from both the controller and the switch. The control-
ler can initiate, read, and modify the ST or state transition
table in the FP. The events mean changes of network state,
such as a new coming packet, connection interruption, net-
work congestion, and so on.

We add a GOTO_ST(n) instruction in the data plane, which
is used to direct packets from an OpenFlow pipeline to ST n in
an FP. The packet is directed from the FP back to flow table
m through the instruction GOTO_FT(m). We design instruc-
tions for stateful processing in an FP. These instructions can
be flexibly extended to meet application requirements in the
data plane. The instructions can be divided into the following
categories:

• Control instructions: They are used to direct packets transfer-
ring between the controller, flow tables, and FP, including
GOTO_ST(n) and GOTO_FT(m).

• Processing instructions: They are used for FP to process flows
or packets.

• State operating instructions: They are used to operate the ST.
• Arithmetic instructions: They are used to perform arithmetic

operations.
• Logical instructions: They are used to perform logical opera-

tions.
The controller and FP communicate with each other

through an extended OpenFlow protocol. It is mainly used
for the operation of state information in the data plane, such
as initialization of the ST and state transition table. The con-
troller has full control of the FP. We design two new message
types, controller-to-FP messages and asynchronous messages.
Each of them contains multiple sub-types.

State Table
State tables are used to maintain state information in the SDN
data plane. Since different protocols may need to maintain
different state information, each protocol has a corresponding
ST. State tables are initiated by the controller. When an appli-
cation requires stateful processing, the controller instructs the
FP to initiate corresponding STs through an extended instruc-
tion INIT. The controller tells the FP explicitly which domains
the ST should have. State tables are dynamically loaded. The
match fields of STs may be different for various applications.
One stateful application only has one ST and one state tran-
sition policy table. The entries of an ST could be effectively
limited by the expiry mechanism.

The state information is updated according to incoming
packets or internal/external events, and maintained in the data
plane. The state information can also be uploaded to the con-
troller through the asynchronous messages so that the control-

Figure 2. Detailed SDPA architecture.

Controller

Switch

Packet-in
message

Protocol filter table

State

Match fields InstructionsState
Dip=1.2.3.4 GOTO_FT(n)LISTEN
Dip=1.2.3.4 GOTO_FT(n)REQUEST

••• •••
••••••

••••••

••••••

•••

Match fields InstructionsCounter
Dip=1.2.3.4 GOTO_ST(1)3
Dip=1.2.3.6 GOTO_ST(2)34

••• ••••••

Match fields Protocol
Dip=1.2.3.4 tcp
Dip=1.2.5.7 udp

••• •••

Event Next state Instructions

LISTEN SYN REQUEST ALLOW

REQUEST SYN+
ACK ESTABLISH ALLOW

ESTABLISH ACK TRANSFER ALLOW

••• ••• ••• •••

State table n

FP

Packet
out

Packet
in

Flow table nFlow table 0

Execute
action

set

State table 1

State transition policy table nState transition policy table 1

Figure 3. SDPA paradigm.

Transition

State InstructionsState
operatingMatch

IEEE Network • May/June 2016 43

ler can keep the global state information of the network. When
the state information is updated in the FP, it can be sent to
the controller to retain consistency. Figure 2 shows examples
of state tables. The “match fields” domain in an ST refers to
the match fields of packets. It is flexible and extensible. For
example, it can store connections possibly represented by both
source and destination addresses. The “state” domain in an
ST is used to record the state information of flows or packets.
And the “instructions” domain is utilized to record associat-
ed processing instructions to process packets and update the
states. Those instructions can be divided into state operating
instructions and packet processing instructions.

State Transition Table
We design a state transition table to support the specification of
state update policies with respect to a specific connection-orient-
ed protocol. Each ST should be accompanied by a state transition
table. The state transition policy tables may also be different for
different applications. The entries of a state transition policy table
are very limited. Taking a stateful firewall as an example, the
state transition policy table only has a dozen entries.

A state transition table specifies the transition policies indi-
cating how the states transfer according to the specific proto-
col. A state transition table contains four different domains,
including state, event, and next state. State transition tables are
issued to an FP by the controller.

Protocol Filter Table
As a general architecture, SDPA can support a variety of
applications and protocols. Since different applications should
maintain different state, each protocol used by the applications
should have a specific ST. The protocol filter table should be
established in advance in the controller to determine to which
protocol the connection belongs. An example of protocol filter
table is shown in Fig. 2 where the match fields domain refers
to the matching domains, and the protocol domain refers to
which protocol the filtered packet is using.

When a matching in the protocol filter table succeeds, a cor-
responding flow entry is issued by the controller carrying the
extended instruction GOTO_ST(n). The parameter n refers to
the ST ID to which the packet should be sent. At the same time,
corresponding ST domain information and a state transition table
are issued to the FP for stateful processing in the data plane.

SDN Switch Architecture Supporting SDPA
We design an SDN switch architecture supporting SDPA as
shown in Fig. 4. We add the FP and ST to the SDN switch
architecture to maintain the state information in the data
plane. We also add a policy module, which is used to adjust
the processing policies. This module includes the state transi-
tion table discussed above.

The new architecture consists of the following functional
modules.

Network Interface: Directly connected to the physical layer.
Its main functions include receiving/sending packets and pack-
et processing. It works in the physical layer and the link layer.

Forwarding Engine: Responsible for determining the packet
forwarding paths. It parses the received packet headers and
looks up the forwarding table to obtain the destination ports
for the forwarding operation.

Forwarding Processor: It interacts with the controller and
is responsible for the maintenance and management of state
information in the data plane.

Forwarding Table: Plays the role of connecting the entire
system. It can be updated according to the information issued
by the controller and returns associated forwarding instruc-
tions to the forwarding engine.

State Table: It is used to maintain state information during
the processing procedure in the data plane.

Policy Module: Used to adjust and control the processing
policies, such as the state transition policy and packet pro-
cessing policy, of the switch. The policies are issued by the
controller.

Use Case and Evaluations
To demonstrate the feasibility and efficiency of our approach,
we implemented a stateful firewall, a typical VNF, based on
the SDPA architecture and evaluated its performance.

Implementation of a Stateful Firewall
In our implementation, we extended Open vSwitch (OVS) [8]
to support FP and used NOX [9] as the SDN controller, on
which we developed a VNF, a stateful firewall. All our experi-
ments were performed in the Ubuntu 12.04 system running on
a Dell OPTIPLEX 780 computer. The CPU of this computer
is Intel® Core™ 2 Duo Processor E7500 (2.93 GHz), and the
internal memory is 3.21 GB. The network card is an Intel 10
Gigabit Network Connection. We used IXIA [10] to generate
and send original packets in our testbed environment.

We implemented the stateful firewall application based
on the SDPA architecture, as shown in Fig. 1c, where an FP
is used to maintain the state of TCP connections and UDP
pseudo connections. The ST resides in the FP to record state
information. The match fields domain consists of SIP, SPORT,
protocol, DIP, and DPORT. The state domain contains Connec-
tion state, Sequence number, Acknowledge number, Idle timeout,
and Hard timeout. The instructions domain includes state oper-
ating instructions and packet processing instructions.

Performance of Stateful Firewalls in SDPA Architecture
against Stateful Firewalls in Traditional SDN Architecture:
We conducted a contrast experiment to evaluate the efficiency
of SDPA. We needed to evaluate the performance of process-
ing states in switches based on the SDPA architecture against
processing states in the controller based on the traditional SDN
architecture. We also developed a stateful firewall application
based on the traditional SDN architecture, where the state
information is maintained in the controller as shown in Fig. 1b.

We tested the forwarding latency and the throughput in our
experiment. As we can see from our experiment results, when

Figure 4. SDN switch architecture supporting SDPA.

Packet
buffer

Data path

Interface

Policy
module

State
table

Forwarding
table

Control path

Controller

Forwarding
processor

Forwarding
engine

Interface Interface••••••

IEEE Network • May/June 201644

packet size ranges from 64 to 1024 bytes, the average forward-
ing latency reduces more efficiently in SDPA architecture than
that in the transitional SDN architecture as shown in Fig. 5a.
In SDPA architecture, most of the packets can be processed
according to the ST in local switches without being sent to the
controller to match the firewall rules. Thus, the throughput
increases a lot in SDPA architecture, as shown in Fig. 5b.

Performance of Stateless Forwarding in SDPA Architecture
vs. Traditional SDN Architecture: Since the SDPA architec-
ture is fully compatible with OpenFlow, SDPA can also sup-
port stateless processing just like OpenFlow. While performing
stateless processing in the data plane, the average forwarding
latency in the SDPA architecture is almost the same as that
in the traditional SDN architecture, as shown in Fig. 5c. And
the throughput in the SDPA architecture is almost the same
as that in the traditional SDN architecture depicted in Fig. 5d.

Performance of Stateful Firewalls in SDPA Architecture
vs. Stateless Firewalls in Traditional SDN Architecture: We
compared our stateful firewall in the SDPA architecture with a
stateless firewall in the traditional SDN architecture. Regarding
the stateless firewall in traditional SDN architecture, only the
first packet of a flow is sent to the controller to match firewall
rules. Then the controller issues a new flow entry to the flow

table. The subsequent packets of the flow are in turn directly
matched against the flow table. As can be seen in Fig. 5e, the
average forwarding latency of the stateful firewall in the SDPA
architecture is slightly increased. The processing overhead is
acceptable, and the throughput rate is nearly unchanged as
shown in Fig. 5f.

Performance of Stateful Firewall in SDPA Architecture vs
Stateful Firewall Netfilter/iptables: Netfilter/iptables [11] is a
user-space application program that allows a system administra-
tor to configure the tables provided by the Linux kernel firewall,
and the chains and rules it stores. Nevertheless, our stateful fire-
wall is an application running on top of a controller to enable
effective state information processing in SDN-based networks.
We selected a 10 gigabit network card and used a 64-byte pack-
et to conduct our experiment. As shown in Fig. 5g, the total
forwarding latency of stateful firewalls in the SDPA architecture
is slightly higher than that of netfilter/iptables. The packet loss
rates of both kinds of firewalls are almost the same.

Testing the Scalability of State Tables
We performed a test on the scalability of STs and the influ-
ence of forwarding efficiency under different sizes of STs. We
also used 64-byte packets to conduct our experiment. As the

Figure 5. Performance evaluation and comparison: a) forwarding latency; c) forwarding latency; e) forwarding latency;
b) throughput; d) throughput; f) throughput; g) total forwarding latency; h) forwarding latency; and i) throughput.

Size of packets (byte)

(b)

12864

2000

0

Th
ro

ug
hp

ut
 (

M
b/

s)

4000

6000

8000

10000

256 512 1024
Size of packets (byte)

(d)

12864

2000

0

Th
ro

ug
hp

ut
 (

M
b/

s)

4000

6000

8000

10000

256 512 1024
Size of packets (byte)

(f)

12864

2000

0

Th
ro

ug
hp

ut
 (

M
b/

s)

4000

6000

8000

10,000

256 512 1024

State table size

(h)

20
0020
0

0

Fo
w

ar
di

ng
 la

te
nc

y
(u

s)

180
200

160
140
120
100
80
60
40
20

40
00

60
00

80
00

10
00

0

50
,0

00

10
0,

00
0

30
0,

00
0

50
0,

00
0

State table size

(i)

20
0020
0

0

Th
ro

ug
hp

ut
 (

M
b/

s)

700

800

600

500

400

300

200

100

40
00

60
00

80
00

10
,0

00

50
,0

00

10
0,

00
0

30
0,

00
0

50
0,

00
0

Statefull firewall in SDPA architecture
Stateless firewall in traditional SDN
architecture

Stateful firewall in SDPA architecture
Stateful firewall in traditional SDN
architecture

Stateless forwarding in SDPA architecture
Stateless forwarding in traditional SDN
architecture

Size of packets (byte)
(a)

64

100

0A
ve

ra
ge

 f
or

w
ar

di
ng

 la
te

nc
y

(
s)

200

300

400

500

600

128 256 512 1024

Number of packets
(g)

20
,0

00

x 104

0To
ta

l f
or

w
ar

di
ng

 la
te

nc
y

(m
s)

1.5

2

1

0.5

40
,0

00

60
,0

00

80
,0

00

10
0,

00
0

Size of packets (byte)
(c)

64
0A

ve
ra

ge
 f

or
w

ar
di

ng
 la

te
nc

y
(

s)

150

200

100

50

128 256 512 1024
Size of packets (byte)

(e)

64
0A

ve
ra

ge
 f

or
w

ar
di

ng
 la

te
nc

y
(

s)

150

200

100

50

128 256 512 1024

Stateful firewall in SDPA architecture
Stateless firewall in traditional SDN
architecture

Stateful firewall in SDPA architecture
Stateful firewall in traditional SDN
architecture

Stateful firewall in SDPA
architecture
Netfilter / iptables

Stateless forwarding in SDPA architecture
Stateless forwarding in traditional SDN
architecture

IEEE Network • May/June 2016 45

ST size increases, the forwarding efficiency does not noticeably
deteriorate. Since the ST is implemented based on SRAM
in our experiment, the size of the ST can still be increased
theoretically. As shown in Fig. 5h, when the size of an ST
increases from 200 to 500,000, the network forwarding latency
does not increase significantly. And the network throughout
shows almost no change, as shown in Fig. 5i. This indicates
that maintaining state in the data plane has little impact on
forwarding latency and throughput.

Related Work
Some research efforts have recently been devoted to extending
the OpenFlow data plane abstraction [12–14]. Bosshart et al.
[12] pointed out that the rigid table structure of current hard-
ware switches limits the scalability of OpenFlow packet process-
ing to match on a fixed-set of fields and to a small set of actions.
By comparison, we strive to enhance the programmability of
the data plane by adding a co-processing unit in SDN switches.
In addition, Bianchi et al. [13] proposed a new abstraction to
formally describe a desired stateful processing of flows inside
the SDN data plane based on extended finite state machines.
Moshref et al. [14] proposed flow-level state transitions as a
new switch primitive for SDN. They just put forward a prelimi-
nary design, but did not provide concrete implementations and
evaluations. In contrast, we present a detailed technical scheme
for realizing our SDPA architecture in the SDN data plane to
support NFV, and the relationships and interactions between
the state tables and flow tables are articulated. We implemented
a typical VNF, a stateful firewall, based on our SDPA architec-
ture along with convincing experimental results.

Conclusion and Future Work
Software defined networking techniques can be used to imple-
ment VNF. However, OpenFlow-enabled SDN-based NFV
still has performance issues due to the bottlenecks of the con-
troller, and the channel between the control plane and the
data plane. OpenFlow only provides a simple match-action
paradigm and lacks the function of stateful processing for the
SDN data plane, which limits its support for advanced network
applications. In this article, we have put forward SDPA to
support NFV. We have designed a co-processing unit, the FP,
which can help manipulate states in the SDN data plane. The
feasibility and efficiency of our approach are demonstrated
through the implementation of a stateful firewall. Our imple-
mentation and evaluations showed that the SDPA architecture
has the following advantages:
• VNFs that need to maintain state information can be sup-

ported well in the SDPA architecture, and the forwarding
efficiency can be improved efficiently.

• The SDPA architecture is fully compatible with OpenFlow.
Applications that do not need to maintain state information
in the data plane can be fully supported as well without
causing additional processing overhead.

• The performance of stateful processing in the SDPA archi-
tecture is close to that of stateless processing in the tradi-
tional SDN architecture.

• The SDPA architecture enhances the programmability and
flexibility of the data plane significantly.
For future work, we will develop more network applications,

such as DNS reflection attack defense, fast reroute, and NAT,
based on the SDPA architecture to validate the versatility and
availability of SDPA. We will also develop an SDPA hardware
prototype system based on NetFPGA[15] and further evaluate
the performance of SDPA architecture. Adding some intelli-
gence into switches may increase their complexity. Thus, we
will investigate an optimized solution to simplify our design.

Acknowledgment
The authors would like to acknowledge the support from the
National High-Tech R&D Program (“863” Program) of China
(No. 2013AA013505) and the National Science Foundation of
China (No. 61472213 and No. 61303194).

References
[1] “Network Functions Virtualisation,” updated white paper; https://portal.

etsi.org/nfv/nfv_white_paper2.pdf
[2] N. McKeown et al., “OpenFlow: Enabling Innovation in Campus Net-

works,” ACM SIGCOMM Comp. Commun. Rev., vol. 38, no. 2, 2008,
pp. 69–74.

[3] H. Song, “Protocol-Oblivious Forwarding: Unleash the Power of SDN through
a Future-Proof Forwarding Plane,” Proc. 2nd ACM SIGCOMM Wksp. Hot
Topics in Software Defined Networking, Aug. 2013, pp. 127–32.

[4] M. Jarschel et al., “Modeling and Performance Evaluation of an Openflow
Architecture,” Proc. 23rd Int’l. Teletraffic Congress, Sept. 2011, pp. 1–7.

[5] P. Bosshart et al., Programming Protocol-Independent Packet Processors,
arXiv preprint arXiv:1312.1719, 2013.

[6] B. Anwer et al., “A Slick Control Plane for Network Middleboxes,” Proc.
2nd ACM SIGCOMM Wksp. Hot Topics in Software Defined Networking,
ACM, Aug. 2013, pp. 147–48.

[7] ONF, “OpenFlow-Enabled SDN and Network Functions Virtualization,”
white paper, 2014.

[8] Open vSwitch: http://openvswitch.org/
[9] NOXRepo: http://www.noxrepo.org/
[10] Ixia: http://www.ixiacom.cn/
[11] netfilter/iptables project: http://www.netfilter.org/
[12] P. Bosshart et al., “Forwarding Metamorphosis: Fast Programmable

Match-Action Processing in Hardware for SDN,” Proc. ACM SIGCOMM
2013 Conf., Aug. 2013, pp. 99–110.

[13] G. Bianchi, “OpenState: Programming Platform-Independent Stateful
Openflow Applications Inside the Switch,” ACM SIGCOMM Comp. Com-
mun. Rev., vol. 44, no. 2, 2014, pp. 44–51.

[14] M. Moshref et al., “Flow-Level State Transition as a New Switch Primitive
for SDN,” Proc. 2014 ACM Conf. SIGCOMM, Aug. 2014, pp. 377–78.

[15] NetFPGA: http://netfpga.org/

Biographies
Jun Bi [SM] (junbi@tsinghua.edu.cn) received B.S., M.S., and Ph.D. degrees
in computer science from Tsinghua University, China. He was a postdoctoral
scholar at Bell Laboratories Research and a research scientist at Bell Labs.
Currently he is a full professor and director of the Network Architecture
Research Division, Institute for Network Sciences and Cyberspace at Tsing-
hua University, and a key member of the Tsinghua National Laboratory for
Information Science and Technology. His research interests include Internet
architecture and protocols. He has successfully led tens of government sup-
ported or international collaboration research projects, published more than
100 research papers and 20 Internet RFCs or drafts (four of them were
approved), owns 20 innovation patents, and has received national science
and technology advancement prizes. He is Co-Chair of the Asia Future
Internet Forum (AsiaFI) Steering Group and Co-Founder of the China SDN
Commission, and serves as Executive Chair. He has served as Co-Chair of
Workshops/Tracks at INFOCOM, ICNP, Mobihoc, ICCCN, and so on, and
has served on the Organization Committees or Technical Program Commit-
tees at SIGCOMM, ICNP, CoNEXT, SOSR/HotSDN, and so on. He is a
Senior Member of ACM and a Distinguished Member of the China Computer
Federation.

Shuyong Zhu (zhu-sy11@mails.tsinghua.edu.cn) received B.S. and M.S.
degrees in computer networks from the National University of Defense Tech-
nology, China. He is a Ph.D. student at the Institute for Network Sciences and
Cyberspace, Tsinghua University. His research fields include Internet architec-
ture, software-defined networking, and network function virtualization.

Chen Sun (c-sun14@mails.tsinghua.edu.cn) is a Ph.D. student at the Institute for
Network Sciences and Cyberspace, Tsinghua University, China. His research
fields include software-defined networking and network function virtualization.

guang yao (yaoguang@cernet.edu.cn) received B.S. and Ph.D. degrees
in computer science from Tsinghua University, China. He is a postdoctoral
researcher at the Institute for Network Sciences and Cyberspace Tsinghua
University. His research fields include Internet architecture, software-defined
networking, and source address validation.

hongxin hu (hongxih@clemson.edu) is an assistant professor in the Division
of Computer Science, School of Computing, Clemson University. His current
research interests include security in SDN and NFV, security and privacy in
social networks, and security in cloud and mobile computing. He received his
Ph.D. degree in computer science from Arizona State University in 2012.

