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ABSTRACT
In multi-tenant data centers, each tenant desires reassuring pre-
dictability from the virtual network fabric – bandwidth guarantee,
work conservation, and bounded tail latency. Achieving these goals
simultaneously relies on rapid and precise traffic admission. How-
ever, the slow convergence (tens of milliseconds) of prior works
can hardly satisfy the increasingly rigorous performance demand
under dynamic traffic patterns. Further, state-of-the-art load balance
schemes are all guarantee-agnostic and bring great risks on breaking
bandwidth guarantee, which is overlooked in prior works.

In this paper, we propose `FAB, a predictable virtual fabric solu-
tion which can (1) explicitly select proper paths for all flows and (2)
converge to ideal bandwidth allocation at sub-millisecond timescales.
The core idea of `FAB is to leverage the programmable data plane to
build a fusion of an active edge (e.g., NIC) and an informative core
(e.g., switch), where the core sends link status and tenant informa-
tion to the edge via telemetry to help the latter make a timely and
accurate decision on path selection and traffic admission. We fully
implement `FAB with commodity SmartNICs and programmable
switches. Evaluations show that `FAB can keep minimum bandwidth
guarantee with high bandwidth utilization and near-optimal trans-
mission latency in various network situations with limited probing
bandwidth overhead. Application-level experiments, e.g., compute
and storage scenarios, show that `FAB can improve QPS by 2.5⇥
and cut tail latency by more than 21⇥ compared to the alternatives.
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1 INTRODUCTION
In multi-tenant data centers, virtual machines (VMs)1 of a tenant are
expected to be logically interconnected by a virtual network fabric
(VF) as if in a dedicated cluster, even though all tenants share the
same physical network. While many solutions [12, 21, 29, 37, 51]
have been proposed to improve the performance of multi-tenant data
center networks (DCNs), they are not competent to provide a strongly
predictable VF service – bandwidth guarantee, work conservation,
and bounded tail latency for the following two reasons.

First, the convergence speed (tens of milliseconds) of prior pre-
dictable VF works fails to catch up with the increasingly rigorous per-
formance demand from today’s applications2. Multiple factors drive
this trend. On the one hand, resource pooling is an inevitable trend in
data centers with strict resource access deadlines [2–5]. For instance,
being the highest performance level disk in Elastic Block Storage,
the enhanced SSD requires the I/O operation latency to be 100`s
on average and 1<B at tails [18, 57]. On the other hand, with the
emerging specialized compute accelerators, the performance bottle-
neck of distributed computing applications (e.g., distributed machine
learning) is shifting from computation to communication [50, 58];
thus, they require instantaneously available bandwidth every time
the parameter/activation transfer starts, especially for distributed
machine learning inference that typically involves multiple transfers
and needs to respond to online queries within 10<B [47, 48]. Hence,
handling traffic dynamics rapidly, i.e., at sub-millisecond timescales,
is critical to meet the performance demands of today’s applications.

Second, end-to-end bandwidth guarantees could be easily broken
by guarantee-agnostic path management schemes. Existing solu-
tions [29, 37, 44, 45] providing bandwidth guarantee with work con-
servation mostly view the network fabric as an aggregated pipe be-
tween source and destination, assuming that specific path-selections
are made by complementary load balancing schemes, e.g., selecting a
random path [24] or the least-utilized path [7, 31, 32]. However,link
utilization (actual traffic) and link subscription (traffic with band-
width guarantee) are not equivalent due to the work conservation.
When a new flow with a high traffic demand enters the network,
assigning it to the least utilized path may violate bandwidth guar-
antees of others. Thus, all flows on this path converge to new rates
lower than their bandwidth guarantee and face significant perfor-
mance degradation (a detailed example is shown in § 2.2). Note that
guaranteeing the minimum bandwidth is mandatory, but providing
extra capacity is a bonus. Hence, subscription-aware path selection
is essential to provide a predictable VF.

Fundamentally, to make rapid VF convergence and correct path
selection, we observe that the key is the fine-grained network status,
e.g., bandwidth subscription, and link utilization. However, due to the

1Or other forms of compute virtualization.
2Making a VF converge means that the system simultaneously meets all three goals –
bandwidth guarantee, work conservation and bounded tail latency.
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lack of fine-grained network status, prior works have to suffer from
heuristic rate adjustment and utilization-oriented load balance, even
random path selection. Fortunately, the emerging programmable
switches and NICs are bringing possibilities to obtain real-time and
precise network information, opening up new opportunities to build
a dedicated predictability framework.

In this paper, we propose `FAB, a framework that provides a
strongly predictable VF service to data center tenants. By leveraging
programmable NICs and switches in modern data centers, `FAB si-
multaneously provides minimum bandwidth guarantee, work conser-
vation, and bounded tail latency in an end-to-end way. Specifically,
`FAB builds a fusion of an informative core (e.g., switches) and
an active edge (e.g., NICs). In the core, each switch sends critical
information, e.g., link utilization and active bandwidth subscription,
back to the edge via In-band Network Telemetry (INT). With the
real-time feedback from the core, the edge can achieve the expected
network performance via rapid and accurate path selection and rate
control. The informative data plane provides a foundation for rapid
detection and mitigation of performance degradation.

There are three main challenges to realizing `FAB. First, since the
data center traffic mix changes swiftly, it is necessary to quickly pro-
vision bandwidth once a tenant has traffic demand while efficiently
allowing other tenants to share the reserved but unused bandwidth.
Second, data center traffic is bursty in nature, e.g., incast, which
requires the distributed framework to admit traffic cooperatively
across hosts to avoid traffic interference among tenants at short
timescales. Third, each edge reacts to path quality changes inde-
pendently, resulting in a prolonged convergence process and traffic
oscillation.

`FAB addresses these challenges with three innovations:
(i) Hierarchical bandwidth allocation. First, the edge selects a

path for each flow to keep that the total active bandwidth subscrip-
tion, i.e., the sum of minimum bandwidth guarantees of tenants that
pass through the link, does not exceed the link capacity. Hence, the
minimum bandwidth can be guaranteed for all tenants, if the link
capacity is shared by the flows proportionally to their minimum
bandwidth. Then, the edge swiftly and accurately adjusts sending
rate to make the bandwidth utilization converge to the target. There-
fore, even if some tenants have insufficient demands, the unused
bandwidth can be quickly utilized by other tenants that share the
same link; conversely, if a tenant has an immediate traffic demand,
it can rapidly grab its guaranteed bandwidth back. Our theoretical
analysis suggests that `FAB can achieve both strictly guaranteed
minimum bandwidth and high network utilization (§ 3.3);

(ii) Two-stage and window-based traffic admission. In order to
avoid queuing, each edge uses a window updated by bandwidth
utilization,i.e., utilization-based window, to limit a tenant’s inflight
traffic on a path. Across hosts, `FAB controls each tenant’s total burst
up to their minimum bandwidth guarantee and additively increases
their sending windows until utilization-based windows ramp down,
and starts to use the latter. Thus, `FAB can bound the queue size on
bottleneck link to three times of BDP (Bandwidth-Delay Product)
(§ 3.4);

(iii) Accurate and stable path migration. `FAB makes a timely
and accurate judgment on available bandwidth and the risk of latency
spikes on a path with a single probe instead of indeed putting traffic
on the path. Hence, the edge can swiftly select a proper path to
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Figure 1: Bursty traffic interference in ECS scenario.

migrate to for maintaining end-to-end performance without a lengthy
convergence process or impacting other innocent tenants; `FAB’s
path migration can also avoid oscillations and packet re-ordering
(§ 3.5).

We implement `FAB in commodity SmartNICs and programmable
switches. Experiments show that `FAB can keep VF predictable
under various network conditions, even under highly dynamic work-
loads, e.g., incast. In compute scenario, under the dynamic back-
ground MongoDB traffic, `FAB supports 2.5⇥ higher QPS and cuts
20⇥ tail latency for Memcached compared with alternatives. In the
storage scenario, `FAB can efficiently reconcile different tasks and
decrease end-to-end storing time 4.8⇥ on average and more than
21⇥ at the tail. Meanwhile, `FAB can support tens of thousands of
VM-pairs with <20% extra hardware resources and <1.28% probing
bandwidth overhead, benefited by a scalable probing scheme. NS3
simulations verify that `FAB can keep sub-millisecond convergence
under real workload in large-scale topology (512 servers).
Claim: This work does not raise any ethical issues.

2 MOTIVATION
2.1 Practical challenges for predictable VFs
In production data centers, best-effort mechanisms are widely de-
ployed to manage network resources. Specifically, (1) to suppress
interference among traffic from different tenants, data center opera-
tors deliberately keep the overall network utilization low; (2) ECMP
is used as the de-facto in-network load balance for splitting traffic
on equivalent paths. However, without efficiently monitoring and
reacting to complex in-network situations, two major obstacles make
them perform poorly in practice.

1. Traffic is bursty at short timescales. Traffic dynamic in DCNs
shared by uncooperative tenants is changing more and more dra-
matically, which requires ensuring VF predictability for tenants
even at short timescales. Despite the cloud provider typically over-
provisioning the bandwidth capacity, it still cannot efficiently isolate
network resources among tenants to accommodate the applications’
increasingly sensitive demands at short timescales. Burst traffic from
different tenants may not break the bandwidth restriction in the long
term, but the corresponding accidental resource competitions lead to
a large number of tail latency cases. We observe this phenomenon in
both production compute and storage scenarios.

In the Elastic Compute Service (ECS) scenario, Figure 1 shows
round-trip time (RTT) of a tenant’s traffic from a cloud provider over
one month, and hourly-averaged network utilization of all tenants’
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Figure 2: Bursty traffic interference in EBS scenario.
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Figure 3: Load imbalance among equivalent upstream links of
an Aggregation switch in production data center.

traffic in that cluster. While hourly-averaged network utilization is
below 10%, the tenant observes a periodic bandwidth decline and
up to 50⇥ latency inflation in 99.9th percentile than the median, due
to the traffic interference from another tenant (not shown) running
routine data analytics.

In the Elastic Block Storage (EBS) scenario, several indepen-
dent tasks work together to provide the complete storage service.
Figure 2a shows the average network load of a server, which con-
sists of (1) SA: requests/responses of Storage Agents towards block
servers, (2) BA: three data replicas sent from Block Agents to chunk
servers, (3) GC: periodically executed Garbage Collection service
by merging data modification and comprises stored data. Each task
in production is treated as from different “tenants” since they need
individual network resources to satisfy performance consistently.
The overall network utilization keeps steady at 27%, and each com-
ponent shares a fixed part of bandwidth at the second granularity.
However, Figure 2b shows that the tail task completion time is 10⇥
larger than the average. Through comprehensive analysis, the root
cause is that the great burst of traffic in the millisecond granularity
exceeds the software processing capability and triggers the PCIe
back-pressure, which finally leads to temporary queuing in the NIC.

2. It is nontrivial to aggregate multiple parallel paths as an
ideal pipe. Previous work focusing on allocating the end-to-end
network resource often assumes that an independent load balance
mechanism can equally split traffic on all equivalent paths. How-
ever, load imbalance is quite common in production data centers.
Figure 3a shows the port throughput of all 24 upstream links from
an Aggregation switch. These upstream links are connected to dif-
ferent Core switches and therefore equivalent in transferring data
from the current Pod to other Pods. However, the load of these links
converges to 6 different levels. Link 22 ⇠ 24 bears 10⇥ larger load

Figure 4: RTT under various incast degrees. `FAB can bound
tail latency as the incast degree increases, while the tail latency
of PicNIC0+WCC+Clove (PWC) increases. (Case-1)

than link 1 ⇠ 6. The root cause is that both ToR switches and Ag-
gregation switches use the same type of switch chip, which causes
hash polarization [63]. Even worse, the deployed switching chip has
few candidates for hash algorithms, and no combination of different
layers can avoid this problem altogether. Besides hash polarization,
many other reasons (e.g., hash collision of elephant flows, specific
routing configuration, or forwarding priority) could also lead to load
imbalance. Hence, even if we assign correct weights for traffic from
different VFs, their bandwidth guarantees could still not be satisfied
owning to be allocated to congested paths.

2.2 State-of-the-art solutions cannot help out
While there is a gap between production-deployed and state-of-the-
art solutions, we argue that they all use heuristic evolution based
on limited network information. This root cause determines that
prior solutions (and their combinations) cannot converge accurately
and efficiently to the ideal results3. For example, PicNIC [37], the
state-of-the-art scheme designed for predictable virtualized NIC,
provides guaranteed performance at edges but cannot address fab-
ric congestion. Seawall [51], a representative of runtime network-
wide bandwidth allocation schemes, uses weighted congestion con-
trol (WCC) algorithms to share network bandwidth proportionally
to the per-source weight but converges slowly (tens of millisec-
onds). WCC is widely deployed in typical bandwidth allocation
schemes [25, 29, 45, 51], making them all fail to react to sub-
millisecond-level traffic bursts. Clove [31] selects a path for flowlets
based on explicit path utilization for load balancing. However, it
cannot provide bandwidth guarantee for tenants due to the lack of
tenant-level guarantee information. These drawbacks can signifi-
cantly impact the predictability of end-to-end performance. Next,
we use experiments to illustrate this point.

Experiment settings : Our testbed has the link capacity of 10Gbps,
with the maximum base RTT (10B4')) ) of 24`s. Like existing
work [29, 40, 45], we set the target bandwidth utilization as 95%.
Since we mainly focus on network resources, we only compare
PicNIC’s components for bandwidth envelope, i.e., weighted fair
queues and receiver-driven CC, and we call it PicNIC0. This is
similar to EyeQ [29]. We choose Swift [36], a delay-based CC
recently proposed for DCN, as the basis of WCC, due to its excellent
low latency. We use Clove [31] as the load balance mechanism to
split traffic at the flowlet granularity according to the path utilization.

3Comparisons between `FAB and related work can be found in Appendix A.
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Figure 5: Path migrations for utilization-oriented load balance may endanger minimum bandwidth guarantees. (Case-2)

Case-1: Greedy rate evolution may break the latency bound. We
use an “incast” scenario to show that the combination of current
solutions cannot guarantee bounded latency. # flows belonging to
different VFs have the same destination host, and their bandwidth
guarantees are all 500"1?B. They start to transmit traffic at the same
time. # increase from 2 to 14, and Figure 4 shows the distribution of
RTT under different scenarios. The tail latency is positively associ-
ated with the incast degree. The root cause is that existing congestion
control heuristically evolves flow rate to achieve full network utiliza-
tion. Therefore, more active flows in the network would exaggerate
the upper bound of the burst and finally lead to unbounded queuing
latency.

Case-2: Utilization-oriented load balance may break bandwidth
guarantee. As shown in Figure 5a, �1, �2,0=3�3 are initially allo-
cated to different paths and achieve the desired bandwidth. At this
point, the subscription of Path %1, %2, and %3 is 90%, 80%, and
40%, respectively, while their utilization is 80%, 90%, and 100%,
respectively. Note that utilization is essentially different from sub-
scription due to insufficient demand (%1) or work conservation (%2
and %3). At 100<B, F4 enters into the network. Since path %1 has
the lowest utilization, �4 is assigned to %1. However, it causes band-
width dissatisfaction of �1. With the recommended flowlet gap in
Clove (200`s), �1 and �4 remain in %1, with bandwidth guaran-
tee persistently unsatisfied. This result shows that the existing load
balance mechanism cannot perceive the breaking of the bandwidth
guarantee.

Furthermore, to force per-flowlet load balance functional in this
case, we decrease the flowlet gap to 36`s (1.5⇥10B4')) ). So a small
queue buildup would trigger path migration. In this case, as shown
in Figure 5c, �4 never gets acquired bandwidth. When �4 competes
with �1 on %1, it finds out %2 has the lowest utilization and switches
to %2. However, once �4 is assigned to %2, both �2 and �4 cannot
obtain the guaranteed bandwidth. Then �4 will try to move back
to %1 again, since %1 has the lowest utilization now. �4 migrates
paths under false guidance, leading to network oscillations, and the
cascading effect breaks bandwidth guarantees of other VFs (+�1
and +�2). It shows that a straightforward combination of existing
solutions fails to provide bandwidth guarantee with work conserva-
tion because end-to-end link utilization cannot reflect the essential
bandwidth contention, i.e., total minimum bandwidth subscription
on a link. Therefore, bandwidth isolation in multi-path architectures
is not orthogonal to load balancing, which might break assumptions
by existing solutions [12, 45].

2.3 Solution: the edge-core fusion
In the traditional network architecture, typically, the network core
(switches) works independently with the edge (end hosts), causing
that prior work commonly treats the core as a pipe with little direct
feedback, either assuming an ideal core or leveraging heuristics to
infer the network status.

Fundamentally, this issue can be solved if the network core
can provide explicit information. With the help of commodity pro-
grammable switches, abundant in-network information, previously
inaccessible, can now be conveniently calculated, stored, and trans-
mitted. Such information allows the edge to make timely decisions
on data transmissions without going through the time-consuming
and inaccurate heuristics. Some work leverages in-network infor-
mation to improve network performance [31, 40], but none of them
provides predictable VF for tenants.

This paper’s core mission is to explore how to fundamentally
improve the VF predictability via collaboration between an informa-
tive core and an active edge. This direction looks promising – for
instance, Figure 4 and Figure 5d show that `FAB’s behaviors are
close to ideal in terms of both steady-state and convergence speed.

3 DESIGN
This section presents the core design of `FAB that builds a pre-
dictability framework on top of an informative data plane.

3.1 Design goals and assumptions

Service model. We abstract a VF using the “Hose Model” – a full-
bisection fabric without internal capacity bottlenecks, where each
VM in the VF should be able to send and receive with a minimum
bandwidth at any time. However, the traffic pattern within the VF,
e.g., many-to-one or one-to-many, determines the bandwidth for an
individual VM-to-VM pair. As the construction of Hose model is
a well-studied area [12, 44, 49], we choose the idea of Guarantee
Partitioning (GP) proposed by ElasticSwitch [45], which dynam-
ically assigns the VM-to-VM bandwidth guarantees based on the
VF’s hose model and online traffic patterns. Hence, we focus on the
VM-to-VM guarantees given by ElasticSwitch in this paper.

Design goals. `FAB has the following design goals:
(i) Minimum bandwidth guarantee. A VF quickly provisions the
minimum bandwidth predefined by tenants for each vNIC that has
sufficient traffic demand;
(ii) Work conservation. A VF allows each vNIC to swiftly go beyond
the minimum bandwidth to fully utilize network resources if other
vNICs do not have sufficient traffic demands;
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Figure 6: The overview of `FAB’s system architecture.

(iii) Bounded tail latency. A VF bounds the end-to-end network
latency between vNICs under bursty traffic demands;

To make `FAB as practical and deployable as possible, we also
have some critical assumptions and non-assumptions:

Assumptions: (i) `FAB operates on the DCN which is constructed
by the commodity programmable switches, e.g., Barefoot Tofino
and Broadcom Trident-4; (ii) `FAB assumes that the entire DCN
topology is known as priori knowledge, thus `FAB-E knows all
path candidates; (iii) Similar to prior work [25, 28, 45], `FAB as-
sumes that VMs have been placed by other virtual cluster allocation
algorithms, e.g., Oktopus [12], so there are theoretically feasible
solutions to satisfy the minimum bandwidth even in the worst case.

Non-assumptions: (i) `FAB does not assume a congestion-free
network core and DCN topology can be single-path or multi-path,
with or without over-subscription; (ii) `FAB does not assume a
perfect load-balancing — the load balancing can have hot spots due
to reasons like hash polarization or hash collision of elephant flows;
(iii) `FAB does not assume any traffic patterns from the tenants.
There can be unpredictable on-off traffic bursts, large scale incasts,
or long persistent flows with occasional micro-bursts. (iv) `FAB does
not assume a switch to have a large number of priority queues. Since
queues are scarce resources and used for different purposes, `FAB
only needs a single queue.

3.2 System overview
Critical telemetry data. Through our deliberate analysis and design,
the following telemetry data of each link ; in network is necessary
and sufficient to ensure VF predictability.
(i) Link capacity. It explicitly guides path selection and rate control,
since the capacity of switches may be different.
(ii) Queue size. It reports the current queue status in switches. Source
edge can timely reduce sending rate to control queuing latency when
observing a queue is building up.
(iii) TX rate. It reflects the output rate of the switch port. Combined
with queue size, source edge can perceive the gap between actual
link load and link capacity, allowing to accurately adjust rate to
quickly converge to the target utilization.
(iv) Total bandwidth subscription. It is the sum of the minimum
bandwidth guarantees of all active VFs passing through the link,
guiding source edge to determine whether a path can satisfy the
minimum bandwidth guarantee in the worst case.
(v) Total sending window. It represents the sum of the traffic admis-
sion windows of all active VFs passing through the link, which acts
as a reference for weighted fair sharing.
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Figure 7: The overall workflow of `FAB.

Architecture. Figure 6 shows that `FAB installs edge agents (`FAB-
E) and core agents (`FAB-C) into the DCN edge and the DCN
core, respectively. The two types of agents work collaboratively
via periodic probe and the corresponding response, e.g., prob from
�>BC1 and resp from �>BC3.

At edge, `FAB-E aggregates one tenant’s application flows from
one VM to another into a moderate number of underlay network
(directional) paths through tunneling or source routing. Source `FAB-
E inserts local VF information, i.e., minimum bandwidth and sending
window, into the probe. Along the forwarding path, the `FAB-C put
the aggregated VF information, i.e., total bandwidth subscription and
total sending window, and network information, i.e., link capacity,
queue size and TX rate into the probe via INT. Destination `FAB-E
returns all information piggybacked in the probe with a response,
together with its local minimum bandwidth. The source `FAB-E
compares the minimum bandwidth of the destination with its local
one to determine the minimum bandwidth guarantee for the VM-pair.

Workflow. As shown in Figure 7, each `FAB-E sends probes along
each active underlay path (Step 1�). After the probe reaches a `FAB-
C, the `FAB-C first reads the piggybacked VF information and
aggregates it with the internal VF information (Step 2�), then inserts
the updated result into the probe (Step 3�). Next, the probe is for-
warded along the path until reaching the destination (Step 4�). When
the response sent by destination `FAB-E gets back (Step 5�), source
`FAB-E will decide whether to continuously use the path with a
rate adjustment based on the information provided in the response
or start to migrate to other path if the current path is not qualified
anymore (Step 6�). Table 2 in Appendix B lists the notations used
in this paper.

3.3 `FAB-E: bandwidth allocation
`FAB combines the manners of distributed and dynamic bandwidth
allocation and advanced congestion control to achieve strong band-
width guarantees and work conservation.

Guaranteeing minimum bandwidth. We define q0!1 as the band-
width token allocated by ElasticSwitch for VM-pair 0 ! 1 4 and
⌫D as the minimum bandwidth a unit token can give to a VM-pair.
Hence, the minimum bandwidth 0 ! 1 can get is ⌫0!1 = ⌫D⇥q0!1 .
The sender VM 0 needs to choose a path and control its sending rate
towards the receiver VM 1 to satisfy ⌫0!1 .

4§ 6 discusses how to distribute VM’s tokens among VM-pairs.



SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Wang et al.

The strategy `FAB takes is to share bandwidth proportionally to
the bandwidth tokens of the VM-pairs. When multiple VM-pairs’
underlay paths go through a link ; with target bandwidth capacity
⇠;

5, they should share the link capacity proportionally to their
bandwidth tokens. However, since a sender does not know about
other senders coexisting on ; , it needs information feedback from ;
to know its proportional share. Thus we have:

A ;0!1 =
q0!1

�;
⇥⇠; (1)

where �; , which is reported by the core with `FAB-E’s probe re-
sponds, is the total token of all active VM-pairs on ; . Then, A0!1 =
min; 2?0!1

{A ;0!1 }, where ?0!1 is the path of VM-pair 0 ! 1. A0!1
gives a lower bound of bandwidth that VM-pair 0 ! 1 can get from
?0!1 .

We choose the proportional sharing strategy because it provides
an essential feature to make a quick judgment of path quality and
avoid harmful impacts to innocent VFs. Specifically, if⇠; � �; ⇥⌫D ,
all VM pairs can be satisfied (A0!1 � ⌫D ⇥ q0!1 ). Otherwise, none
of the VM pairs can achieve its minimum bandwidth guarantee.
Therefore, when the sender 0 finds ⇠; � �; ⇥ ⌫D , it can safely send
traffic with A0!1 on link ; because others will be satisfied with their
minimum bandwidth guarantee too; If the sender 0 predicts that
⇠; < (�; + q0!1 ) ⇥ ⌫D after VM pair 0 ! 1 joins in the link ; , it
will not continue this migration, because otherwise all existing VFs
on ; could be unsatisfied.

Work conservation. It is safe but not efficient if all senders’ send-
ing rates are up to A0!1 , because some senders might not always
have data to send, i.e., insufficient demands. For work conservation,
senders should use A0!1 as a lower bound, and it can go beyond
that. We define '0!1 as the upper bound bandwidth that VM-pair
0 ! 1 can have, which varies according to the actual load of the
core. Suppose link ;’s actual TX rate CG; is lower than the target
capacity ⇠; . In that case, all senders can scale up their sending rate.
Thus the sending rate in Eqn (1) is replaced by:

';0!1 = min{q0!1

�;
⇥ '; ⇥

⇠;
CG;

,⇠; } (2)

where '; =
Õ
80!12%; '

;
0!1 is also reported by `FAB-C in probe

responses. In Eqn (2), ⇠;
CG;

can precisely measure the gap between
the actual and the target link utilizations. By reporting the central-
ized view (�; and CG; ) to the edge, a core link guides the senders to
scale up (e.g., switching from bandwidth guarantee to work conser-
vation) or down (e.g., switching from work conservation to band-
width guarantee) to approach the target utilization and keep the
proportional (q0!1

�;
) sharing among VM-pairs. Similarly, we have

'0!1 = min; 2?0!1
{';0!1 }, because we cannot utilize more band-

width than the bottleneck link.

3.4 `FAB-E: traffic admission
Avoiding queuing in the core : Eqn (2) only considers bandwidth
convergence, but short-term traffic bursts can happen and cause
latency spikes in transient. To control the queuing latency in the
core, we advocate the window-based flow control, which are widely

5⇠; = [⇠0; . ⇠
0
; is ;’s physical bandwidth capacity and we pick [ = 0.95 to absorb

transient bursts.

used in TCP and RDMA [27, 40]. Then, we modify Eqn (2) to the
following:

F;
0!1 = min{q0!1

�;
⇥,; ⇥

⇠; ⇥)0!1

CG; ⇥)0!1 + @;
,⇠; ⇥)0!1 } (3)

where )0!1 is the 10B4')) between 0 and 1 without queuing; @;
is the real time queue size of ; ;,; =

Õ
80!12?; F

;
0!1 is the total

sending window of all active VM-pairs traversing link ; ; F0!1 =
min; 2?0!1

{F;
0!1 } is the sending window size of VM-pair 0 ! 1.

Eqn (3) controls the total inflight traffic and reduces the sending
windows when the queue of link ; is building up. Essentially, `FAB
converges to weighted fairness rapidly while maintaining close-to-
zero queuing latency with the information of �; and ,; from the
core, which is critical to the predictable performance. The theoret-
ical analysis on `FAB’s fairness and utilization convergence is in
Appendix C.

Bounding the worst-case latency : While F0!1 allows immediate
use of network capacity if the window permits, it cannot handle
transient congestion during synchronized bursts. Especially, when
the link keeps being under-utilized, it is quite possible that F0!1 =
⇠; ⇥)0!1 which means any VM pair with a single token can use
the full capacity. Then, if multiple VM pairs have traffic demands
simultaneously, the total inflight traffic and worst-case latency are
still unbounded.

Our strategy is two-stage traffic admission, allowing tenants to
ramp up to its minimum bandwidth guarantee quickly and a little
slower to converge to work conservation. This is because tenants
pay for its guarantee, but the extra capacity is a “bonus”, and doing
this can provide a strict bound to the inflight traffic and so as the
end-to-end latency.

Scenario-1 : For a new VM-pair just joining a path, it uses F 00!1 =
q0!1 ⇥ ⌫D ⇥)0!1 as bootstrap sending window. It then performs
additive increasing byF 00!1  F 00!1 +

q0!1
�;
⇥⇠; ⇥)0!1 per RTT

until F 00!1 is larger than the F0!1 from Eqn (3) and then start to
use F0!1 .

Scenario-2 : For an existing VM-pair on a path but with actual
sending rate lower than A0!1 , it first uses F 00!1 = A0!1 ⇥ )0!1
and then follows the same increasing procedure as in Scenario-1.
Because on a qualified path, ⇠; � ⌫D ⇥ �; , Scenario-2 creates the
same or more load than Scenario-1.

For a link ; , in the worst case, all VM pairs start simultaneously
(in Scenario-2) and increase one ;’s BDP per RTT. Our theoretical
analysis (in Appendix C) suggests senders take 2 RTTs to learn the
load created by the initial burst from the core and start to reduce its
sending rate, the maximum inflight bytes is bounded by:’
80!12%;

A ;0!1)0!1 +
’

80!12%;

q0!1

�;
⇠;)0!1 +CG;)<0G < 3⇠;)<0G

where )<0G is the maximum 10B4')) (diameter) of the DCN.

3.5 `FAB-E: path migration
While `FAB-C can detect performance degradation and migrate to
other paths swiftly (we demonstrate it later), `FAB-E needs to avoid
the side-effect caused by path migration.

Triggers of path migration : In `FAB there are two reasons for
path migrations: (i) Satisfying minimum performance requirements
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when the current path becomes incapable; (ii) Obtaining more re-
sources from idle paths for network-wide work conservation. We
have different strategies for them to enhance the overall stability of
the network, due to their different emergency. (i) should be done
quickly with caution – in order to avoid unnecessary disturbs to the
network, a VM-pair should monitor for a sufficiently long time (5
RTTs in our implementation) to ensure that the current path is con-
sistently violating minimum bandwidth guarantee; and (ii) should be
performed less frequently – a VM-pair should observe a persistently
better path for a long duration (30 seconds in our implementation)
before migrating.

Path selection : While `FAB-E can perceive all the underlying
paths between the source and the destination, it randomly chooses
a few of them as candidate paths for the VM-pair. When a VM-
pair initially joins in or begins a path migration, `FAB-E sends
multiple probes to the candidate paths in parallel to bootstrap or to
start a migration. It marks all paths which can serve with minimum
bandwidth guarantees, i.e., ⇠; � (�; + q0!1 ) ⇥ ⌫D on all links, as
“qualified”. Among all qualified paths, it selects one randomly with
a preference to the path with minimum bandwidth subscription. For
the migration trigger (ii), only the “qualified” path with the largest
'0!1 , is considered.

Avoiding oscillations : The synchronization may cause oscillation
in the edge: a congested path is given up by all the VM-pairs on it,
which becomes idle later, while all the VM-pairs have high probabil-
ity to select the idle path together, making it congested soon. If the
minimum bandwidth guarantee is violated, `FAB-E only allows one
path migration in a randomly picked freeze window within [1,# ]
RTTs on each host. Hence, a `FAB-E agent waits for at least one
RTT to see the load change after the last migration, which is essential
to the convergence as pointed by [34] and our evaluation.

Avoiding reordering : Though not all tenants will require to prevent
packet reordering during path migrations, `FAB still offers an option
to do that. If this option is enabled, `FAB-E will only probe without
sending data in the first RTT on the new path, allowing the packets
on the old path to be cleared.

3.6 `FAB-C: informative core

Summarizing bandwidth demands : While CG; , @; , and ⇠; are
straightforward to obtain by programmable switches [40], �; and
,; are essential summaries of bandwidth demands submitted from
the edge and computed in the core. Maintaining the runtime �; and
,; on the switch is nontrivial. It requires the switch to know when a
VM-pair is activated and when it turns to inactive, which is almost
impossible to be directly recognized by switch. Rather than entangle
the switch processing logic, we maintain necessary status on the
edge. First, the probe of VM-pair 0 ! 1 takes its current q0!1 and
F;
0!1 , so that each switch reads them when the probe bypasses the

switch. A switch maintains two registers for �; and ,; . It uses a
Bloom filter to check whether a VM-pair’s q0!1 and F;

0!1 have
been seen. If not, it will add q0!1 andF;

0!1 to the two registers and
record the VM-pair in the Bloom filter. A VM-pair will explicitly
tells all switches via a finish probe when it becomes inactive: either it
is idle for a while or leaves the current path. Thus, the switches along
the path can adjust �; and,; in the Bloom filter. The VM-pair will

not stop sending the finish probe until it gets the acknowledgments
from all switches in the probe response. `FAB-C also handles silent
quits, and consumes limited hardware resources (§4.2).

The occasional false positive of Bloom filter has limited impacts.
If a false positive happens, a VM-pair will be omitted such that �;
and ,; will be smaller than the truth. While it will increase A0!1
a little bit, it does not influence the proportional sharing and work
conservation. A larger A0!1 means the VM-pair has an enormous
burst at first, and some VM-pairs will choose a path that indeed
has no resource to serve the minimum bandwidth. But the small
headroom of the link capacity (5% in our implementation) and the
path migration due to bandwidth dissatisfaction will digest these
cases. Also, `FAB-C is open to leverage other advanced streaming
algorithms, such as timing Bloom filter [61], for better efficiency.

4 IMPLEMENTATION
We fully implement `FAB with smart NICs and programmable
switches. We have two versions for the active edge: one is on ARM-
based SoC smart NICs, and the other is on FPGA-based smart NICs.
The SoC version can fully support any transport stack and appli-
cation software transparently, while the FPGA version is used to
evaluate `FAB’s complexity, efficiency, and performance running
in hardware6. The SoC smart NIC consists of eight 3.0 GHz em-
bedded processors, 16 GB DRAM, and PCIe Gen3⇥8 interface. It
runs CentOS 7 OS and uses DPDK 17.11.4 at bare-metal mode
for inline packet processing for a 10G port. The FPGA smart NIC,
Xilinx Alveo U200 card, provides line-rate packet processing for
a 100G port. It has a 64 GB onboard DRAM and a PCIe Gen3⇥16
interface. The implementation has 8000+ lines of C++ code in the
SoC version and 18000+ lines of Verilog code in the FPGA version.
In the informative core, we implement `FAB-C in a Barefoot Tofino
programmable Ethernet switch with 32x100G ports. It has a CPU of
four 2.2 GHz cores, 16 GB DRAM, and a PCIe Gen2⇥4 bus. The
implementation has ⇠3400 lines of P4 code and 3600 lines of python
configurations in the control plane.

4.1 `FAB-E at smart NICs
The following descriptions focus on the FPGA-based implementa-
tion. There is a slight difference that `FAB-E in FPGA supports
Verbs interface [1] with DMA, while we use DPDK in SoC to trans-
parently support socket-based transports.

Figure 8 shows the `FAB-E’s overview to leverage several mod-
ules to perform traffic admission and path selection. Packet Sched-
uler maintains queues for each VM-pair to limit the inflight traffic
and avoid head-of-line(HoL) blocking. VM-pair queues belonging
to the same VF are grouped together as a weighted VF queue. All
VF queues connect to a WFQ engine to enforce the weighted fair-
sharing across tenants at the sender side. Thus, Packet Scheduler
runs a hierarchical traffic admission by both VM-pairs’ sending
window and tenant-level WFQ. Context Tables maintain the states
for active VM-pairs. Most of these states are used to construct the
packet headers, while some are used to record the path quality and
status, such as bandwidth token and sending window. Path Monitor

6The FPGA version has not transparently supported socket-based applications yet due
to project scheduling.
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Figure 8: `FAB-E on FPGA-based SmartNIC.

maintains the reachable paths discovered by the existing route dis-
covery component, e.g., source routing controller, and continuously
monitors the path quality and performs path migration.

`FAB-E workflow : For each new VM-pair, the software first con-
figures the VM-pair states into Context Tables and obtains an initial
path from Path Monitor towards the destination. Packet path is en-
forced by source routing. The software then follows the standard
Verbs APIs to exchange packets and descriptors with `FAB-E via
DMA. Packet Scheduler first uses WFQ engine to schedule a next
VF to send. It then scans through all VM-pairs in this VF in a round-
robin manner to schedule a VM-pair permitted by the VM-pair’s
sending window. Similarly, it sends one packet from the application
flows belonging to the scheduled VM-pair in a round-robin manner.
Next, the corresponding TX descriptor is passed to TX pipe to fetch
the actual packet via DMA to emit. On receiving a packet, RX pipe
directly delivers the packet to the main memory via DMA without
software involvement. Consecutive network predictability violations
or drops of probes will trigger path migration. Since the inflight
bytes is no more than three times of BDP, the latency is bounded
by 4 10B4')) s, which is the sum of 3⌫⇡%/⇠; and 10B4')) . Hence,
we detect probe loss by timeout beyond 8 10B4')) s.

Scaling to a large number of VFs : Building a hierarchical WFQ en-
gine for massive VFs is very resource consuming: 1) each weighted
queue requires an independent block RAM unit; 2) scheduling multi-
ple queues requires the implementation of the N-channel multiplexer,
whose cost grows super-linearly. To this end, we constrain the WFQ
engine to use only 8 weighted queues (colored queues in Figure 8)
with distinct levels of weights for VFs to select. Different VFs in
the same weighted queue are scheduled in round-robin. This im-
plementation provides the same weighted scheduling results. Using
constraint weights slightly limits the performance differentiability
but greatly improves the scalability and cost-efficiency. We believe
it is a good trade-off in practice.

Scalable probing scheme : An intuitive probing scheme is a probing
loop: sending next probe right after receiving the previous response.
But it causes the probing overhead to increase linearly as the number
of VM-pairs increases. Instead, `FAB sends probes only when a
VM-pair has immediate traffic demand. Specifically, after receiving

µFAB-C
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Figure 9: `FAB-C on P4 programmable switch.
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Figure 10: Testbed topology.

the previous response, the VM-pair sends the next probe only after
transmitting a predefined amount (!F) of traffic, e.g., one MTU. In
the worst-case where many VM-pairs send traffic simultaneously,
the probe overhead is at most !?

!?+!F of the bandwidth, where !?
(!? ⌧ !F ) is the size of the probe. In practice, this optimization still
retains a good track of information in the core.

Resource usage : Our prototype of `FAB-E based on FPGA sup-
ports 8K VM-pairs and 1K tenants, with up to 10% extra hardware
resources, e.g., Registers, LUTs and Block RAM (more details can
be found in Table 3 in Appendix H).

4.2 `FAB-C at programmable switches
Figure 9 shows the system structure of the informative core imple-
mented on a P4 programmable switch.

Telemetry : As described in § 3.2, `FAB-C reads VF’s demand
(F;

0!1 and q0!1 ) from the probes and writes the link status (CG; , @; ,
and ⇠; ) and demand summaries (,; and �; ) back to the probes. In a
DCN with a diameter of 5 hops, the total size of the telemetry data
is less than 100 bytes, which has low overhead. Appendix G shows
the specific packet format.

Information summary : To recognize active VM-pairs for com-
puting �; and,; , `FAB-C adopts a Bloom filter with two memory
banks running in parallel. With a 2-way hashing Bloom filter of 20
KB, `FAB-C supports a moderate of 20K distinct VM-pairs with
less than 5% false positives, while those false positives have limited
impacts as presented in §3.6.

Handling silently inactive VM-pairs : `FAB requires each VM-pair
to explicitly notify its activity to switches, while a VM-pair may
become inactive silently due to unexpected behaviors. This causes �;
and,; to be larger than expected. To this end, `FAB-C periodically
(10 B42 in our implementation) cleans inactive items, i.e., no probe
is received in the last period, in the Bloom filter and decreases �;
and,; .

Resource usage : To support 20K distinct VM-pairs with tens of
thousands of flows, most types of hardware resources, e.g., SRAM,
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PHV, Hash Bits, consumed by `FAB-C are less than 20%. Moreover,
with the increase in the scale of VM-pairs, the hardware resource
consumption only increases slightly, making `FAB scalable based
on commodity programmable switches. More details can be found
in Table 4 in Appendix H.

5 EVALUATION
We use testbed experiments with our prototypes and large-scale NS3
simulations [52] to evaluate `FAB performance.

5.1 Evaluation setup

Environment : As shown in Figure 10, our testbed is a 3-tier topol-
ogy with two Pods, which contains 8 servers (S1-S8) and 10 pro-
grammable switches. Each server has a 96-core Intel Xeon 2.50GHz
CPU, 791 GB memory, and two NICs – one SoC smart NIC with a
10G port and one FPGA smart NIC with a 100G port. We use virtio
vNIC, while `FAB supports multiple types of vNIC. For all experi-
ments, we set the target bandwidth utilization as 95%. The maximum
network 10B4')) is 24 `s. The default token update period is set
as 32 `s. The network topology in NS3 simulations contains 512
servers connected in a FatTree [6] with 100Gbps links. We use 16
and 32 Core switches to set an oversubscription ratio of 1:2 and
1:1, respectively. All links in simulations are 100Gbps with 1 `s
propagation delay, and the target bandwidth utilization is set as 95%.

Alternatives : We compare `FAB to two kinds of combination of ex-
isting solutions, i.e., PicNIC0+WCC+Clove and ElasticSwitch+Clove,
since the combinations can be used for end-to-end network perfor-
mance of multi-tenant DCNs.

5.2 Microbenchmarks
We first run our SoC prototype in the testbed and use micro-benchmarks
to compare `FAB with alternatives.

Bandwidth guarantee with work conservation : This experiment
shows how `FAB and the alternatives handle intensive minimum
bandwidth demands. For this, a permutation traffic pattern with
different bandwidth guarantees is generated. There are three classes
of VFs: minimum bandwidth guarantee of 1Gbps, 2Gbps, and 5Gbps,
respectively. Each VF has only one VM-pair whose source is in PoD-
1 and destination is in PoD-2, so all traffic traverses Core switches.
Each host has one VF per class, ensuring that the traffic is not
bounded at the host (1 + 2 + 5 = 8Gpbs < 10Gbps). We randomly
insert a VF every 20<B to evaluate the convergence and bandwidth
guarantee properties.

Figure 11a shows that `FAB achieves fast convergence when a
new VF joins in. It persistently guarantees the minimum bandwidth
with work conservation for all VFs via distributed traffic admission
and path migration. In contrast, PicNIC0+WCC+Clove (Figure 11b)
converges slowly when a new VF joins in, and suffers from rate
fluctuation when all VFs coexist. Hence, it only guarantees 3 VFs’
minimum bandwidth. ElasticSwitch+Clove (Figure 11c) guarantees
bandwidth for more VFs, but causes serious queuing in the network
(Figure 11e), because it uses the minimum bandwidth as a lower
bound of sending rate, even if the network is congested.

Figure 11d shows the bandwidth dissatisfaction ratio, the amount
of minimum bandwidth violation over the total traffic volume. Both

PicNIC0+WCC+Clove and ElasticSwitch+Clove fail to meet band-
width guarantee for some VFs (more than 40% and 10%, respec-
tively), because without explicit in-network information, they are
difficult to find proper paths for VFs. In contrast, `FAB efficiently ad-
justs VFs to proper paths and rapidly converges to steady bandwidth
sharing. Hence, the dissatisfaction ratio is mostly close to zero even
when VFs continuously join. Figure 11e shows that `FAB always
keeps queue size low even with the continuous injection of new VFs,
due to its excellent performance in terms of convergence speed.

Bounded Latency : We extend the 14-to-1 incast experiment in
Case-1 with more baselines. Figure 12a shows how different so-
lutions react to incast. `FAB0 is the one without the bounded la-
tency optimization. Both `FAB and `FAB0 quickly react to incast,
and all VFs efficiently converge to the steady rate, while both
PicNIC0+WCC+Clove and ElasticSwitch+Clove converge slowly
with rate fluctuation. Figure 12b shows network RTT measured in
the experiment. PicNIC0+WCC+Clove and ElasticSwitch+Clove
have a 99th percentile RTT of 2.2<B and 2.3<B, respectively, due to
their slow reaction, while `FAB0 decreases it by 11⇥ with feedback
from the informative core. Still, these schemes cannot bound tail
latency. With the latency optimization, `FAB can restrain burst and
control tail latency under the expected bound.

5.3 Application-level performance
We further evaluate application-level performance with transparent
support of `FAB.

Multiple ECS tenants. We set up two tenants: one tenant creates
a VF to run Memcached, a latency-sensitive application, while the
other creates another VF to deploy MongoDB, which is bandwidth-
hungry. Memcached places 24 VMs as servers evenly over S7-S8,
and 12 VMs as clients evenly over S1-S4. MongoDB places 24 VMs
as servers evenly over S5-S8, and 24 VMs as clients evenly into S1-
S4. Each MongoDB client continuously fetches 500KB data from
a random DB server. Each Memcached client periodically fetches
data from random servers, where the data size follows an empirical
distribution of key-value workload [10] with a mean size of 2KB.
Note that the tenants compete for bandwidth in both edge and net-
work core. Similar to [37], we focus on Memcached’s performance
due to its vulnerability to bandwidth contention. `FAB transparently
supports the tenants with predictable VF on bandwidth and latency.
Figure 13 shows the QPS (Query per Second) and QCT (Query
Completion Time) of Memcached requests with different workloads.
`FAB achieves QPS and QCT similar to the ideal case, i.e., without
MongoDB traffic, because `FAB can find proper paths for different
VFs and react to fabric congestion rapidly. In contrast, the alterna-
tives cannot isolate the traffic of different tenants well, which leads
to 2.5⇥ lower QPS and 20⇥ higher tail QCT.

Multiple tasks in EBS. We deploy EBS applications in our testbed:
S1-S4 each have a VM as a Storage Agent, while S5-S8 each have
three VMs: Block Agent, Chunk Server and Garbage Collection
Agent. SA sends a 64KB message to a random BA every 320`s,
and BA replicates the received data to three CS after receiving the
whole message. At the same time, GC reads data from a random
CS every 1<B, and then writes the compressed data back. Consid-
ering the linerate in our testbed is 10⇥ lower than production data
center, the requirements for the latency of an EBS I/O operation is
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Figure 11: Bandwidth evolution under high load. Bandwidth dissatisfaction indicates total minimal bandwidth violation.
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Figure 12: Incast performance (bounded latency).
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Figure 13: Performance of Memcached.

(a) Average task completion time (b) Tail task completion time

Figure 14: Performance of EBS. Latency bound is converted
under 10Gbps.
converted to 2<s on average and 10<s at tails. Figure 14 shows the
TCT (task completion time) of different tasks when the minimum
bandwidth guarantees for SA, BA, and GC are 2Gbps, 6Gbps, and
1Gbps, respectively. Benefit from accurate path selection and rate
control, `FAB can complete I/O operations within the required la-
tency bound, and achieving 21⇥ and 33⇥ shorter tail total TCT than
PicNIC0+WCC+Clove and ElasticSwitch+Clove, respectively.

5.4 Hardware performance and scalability
We use the FPGA-based prototype to show that `FAB is capable of
supporting line-rate of 100GE with small overhead.

Support 100GE network at line-rate : Figure 15a shows that `FAB
scales naturally to support 100GE and ensures predictability upon

(a) Fabric predictability (b) Bandwidth overhead in probing

Figure 15: Fabric predictability and overhead in 100GE.

(a) Rate evolution (b) RTT (CDF)

Figure 16: Performance with 90-to-1 dynamic workload.

traffic dynamics and failures. 7 VFs towards S8 but with different
minimum bandwidth guarantees continuously enter the network
every 10<B. `FAB instantly converges to guarantee minimum band-
width for all VFs while providing bounded latency during the rate
transition. Surprisingly, when Core1 switch fails at 90th <B, the
victim VFs cannot obtain the guaranteed bandwidth temporarily, and
`FAB swiftly migrates victim VFs to other paths. Despite the bursts
and failures, `FAB continuously maintains a close-to-zero queue.

Bounded probing overhead : We use one VF to generate persistent
traffic to saturate the outgoing link and measure the bandwidth
overhead using probes. As shown in Figure 15b, with the increasing
number of VM-pairs, bandwidth overhead gradually goes steady
(as suggested in § 4.1). By setting !F = 4KB, the upper bound
of overhead is 1.28%. Therefore, `FAB can smoothly scale up to
support more VM-pairs.

5.5 Convergence in large scales
We perform simulations to show `FAB’s convergence at scale.
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Convergence under highly dynamic workload: We set a 90-to-1
scenario to show the performance of `FAB under the extreme dy-
namic workload. All VFs have 1Gbps minimum bandwidth guaran-
tee and periodically switch between fixed 500Mbps sending demands
(underload) and unlimited sending demands every 4<B. Figure 16
shows that PicNIC0+WCC+Clove suffers from great overshoot,
leading to significant under-utilization. While ElasticSwitch+Clove
quickly recovers to the minimum bandwidth guarantee, this aggres-
sive behavior worsens latency. In contrast, both `FAB and `FAB0 can
quickly converge to steady rate allocation. With latency optimization,
the maximum RTT of `FAB is bounded within 16`B, 27⇥ lower than
PicNIC0+WCC+Clove.

Performance under real workload: We generate tenant VFs with
random minimum bandwidth guarantees. The number of VMs per
tenant and the number of destinations each VM communicates at
runtime are synthesized from empirical production data centers [14].
The distribution of flow size is consistent with empirical work-
load [7], and the average link loads are set to 50% and 70%, respec-
tively. In each workload, over 40% of flows are expected to be com-
pleted within 100`B, if the minimum bandwidth is guaranteed. We
make sure the minimum bandwidth of all VFs can be theoretically
satisfied under these loads with Silo [28]. Figure 17a shows that the
bandwidth dissatisfaction of `FAB is much lower than the baselines,
especially under heavy workloads. Though ElasticSwitch+Clove pro-
vides lower bandwidth dissatisfaction than PicNIC0+WCC+Clove
by setting sending rate not lower than the minimum bandwidth guar-
antee, it causes higher tail latency (Figure 17b). In contrast, `FAB
efficiently guarantees the minimum bandwidth while controlling the
network congestion, because it can adjust sending rate and select
path accurately and rapidly. Hence, `FAB achieves much better FCT
slowdown7, as shown in Figure 17c. Further, Figure 17d shows the
FCT breakdown for flows with different flow sizes under 1:1 over-
subscription network and load of 0.7. We omit other scenarios since
their FCT breakdown results are similar.

5.6 Sensitivity analysis

Path migration freeze window: Figure 18a and Figure 18b shows
insights on how `FAB’s path migration freeze window impacts the
convergence speed. Under light workload (50%), the whole network
can converge within 500`B regardless of the freeze window param-
eter. As the average load goes up to 70%, `FAB’s slow migration
policy shows its advantage especially in decreasing path migration
frequency. We select the waiting time as [1, 10] RTTs, which keeps
the convergence time low and significantly reduces the oscillation
risk.

Probing frequency: We randomly generate background traffic of
50% load, and then select 16 senders and 1 receiver to generate
incast traffic. Figure 18c shows that with periodic probing, e.g.,
probe packets are sent every = RTTs, `FAB has similar convergence
times with the default probing scheme, because the stale information
captured by lazy probing could lead to an aggressive reaction in each
rate control loop, which makes the rate converge in fewer loops.

7FCT slowdown means the actual FCT normalized by the expected FCT, i.e., dividing
flow size by VM’s minimum bandwidth guarantee in Hose model.

(a) Bandwidth dissatisfaction (b) Tail RTT

(c) FCT with standard deviation (d) FCT breakdown

Figure 17: Performance under real workload with 1:2, 1:1 over-
subscription network and loads of 0.5 and 0.7.

(a) Load 50% (b) Load 70%

(c) Probing frequency

Figure 18: Convergence and stability.

6 DISCUSSION

Explicit bandwidth allocation : `FAB obtains network state and
VF demands from the core and calculates bandwidth allocation at
the edge. An alternative division of labor is that the core explicitly
maintains a base rate, and the edge allocates bandwidth by multiply-
ing the base rate by its bandwidth token, e.g., weighted RCP [17].
While it is helpful for weighted bandwidth sharing, it fails to find
a proper path for a VF. Also, it is challenging for today’s commod-
ity programmable switches to support such complicated arithmetic
operations.

The number of underlay paths : The traditional path management
in DCN spreads the flows into numerous underlay paths, while `FAB
only assigns a small number of underlay paths (even a single path
in the majority of this paper) for a VM-pair. Obviously, `FAB’s
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way has smoother traffic and is more manageable. Also, `FAB is
responsive to capacity issues because its underlay paths are dynamic
to protect performance. In high bisection DCNs, `FAB can even use
a single dynamic path for each VM-pair, while it indeed needs more
paths in oversubscribed DCNs to utilize more bandwidth8.

Bandwidth token assignment : `FAB is open to any bandwidth to-
kens assignment algorithms that dynamically assign VM’s tokens to
VM-pairs. For concreteness, `FAB adopts the idea of GP in Elastic-
Switch [45]. `FAB partitions a VM’s token among its remote peers,
and the unused tokens contributed by bounded VM-pairs, which
have insufficient traffic demand, are reassigned to unbounded ones.
We use a per-VM-pair rate meter to estimate demand. Appendix E
describes the algorithm in detail for completeness.

Impact of heterogeneous response delays : The self-clocking prob-
ing scheme may cause `FAB-Es to receive responses that are out of
sync. The theoretical analysis in Appendix C.3 shows that `FAB-Es
can still converge even though they react to different views of net-
work information. In a 128-to-1 incast simulation where different
`FAB-Es receive responses asynchronously, `FAB can still converge
quickly9. The impact of heterogeneous response delays in more
dynamic and large-scale production data centers deserves further
study and validation.

Cooperation with other control loops in the network : Similar to
prior VF solutions [37, 45], `FAB-E works in physical machines and
can coexist with any congestion control scheme used by guest VMs,
while it is not necessary for the guest VMs to use congestion control.
`FAB works with any per-flow load balancing solution, e.g., ECMP,
which is widely deployed in today’s DCNs. We leave the deep
analysis of cooperating with other solutions, e.g., per-packet [15],
per-flowlet [7, 55] or per-flowcell [22] load balancing, as our future
work.

Comparison with centralized solutions : Centralized solutions,
e.g., Fastpass [43], schedule packets based on a global view of a
central arbiter. While the global information can theoretically help
improve traffic admission and path selection decisions, interaction
with a central arbiter can worsen the latency for short flows. By
contrast, with `FAB-C aggregating information from different VFs
globally, `FAB-E controls traffic admission and path selection in a
distributed manner to improve the latency for short flows.

Partial deployment of programmable hardware : Partial deploy-
ment of `FAB-C may lead to incomplete in-network information
and degrade the overall performance guarantee. On the other hand,
if programmable NICs are unavailable, `FAB-E can also interact
normally with `FAB-C as a component in the hypervisors.

7 RELATED WORK
Predictable virtual fabric has been an enduring research topic. `FAB
is the first that leverages the informative data plane to ensure the end-
to-end VF predictability in bandwidth guarantee, work conservation
and bounded latency simultaneously.

Bandwidth : Static bandwidth reservation [12, 21, 28, 39] pro-
vides strong guarantees but with low resource utilization. FairCloud

8Appendix F shows how `FAB scales to multiple underlay paths.
9More details about the simulation settings and results can be found in Appendix D.

(PS-P) [44] and NetShare [38] require per VM/tenant queues for
bandwidth allocation, which is infeasible in commodity switches;
Seawall [51] uses TCP-like algorithms to dynamically allocate band-
width. FairCloud (PS-L/N) [44] and ElasticSwitch [45] both adopt
Seawall as their fabric solutions, while ElasticSwitch enables tenant-
level bandwidth policy rather than Seawall’s per-source, which is
important to be tenant strategy-free [44]. Edge-based solutions, e.g.,
PicNIC [37], EyeQ [29] and GateKeeper [49], use end-to-end ad-
mission control to dynamically assign bandwidth for minimum guar-
antee and work conserving. However, they require a congestion/loss-
free fabric that is not always held in practice.

Latency : Many solutions achieve low latency using queue reduc-
tion [8, 36, 40], traffic prioritization [9, 42], deadline-aware schedul-
ing [23, 53, 59], in dedicated networks. However, those works do not
directly provide bounded latency in multi-tenant DCNs. Silo [28]
uses network calculus, and Chameleon [54] further exploits path di-
versity to bounded packet delay, QJUMP [20] uses priority queuing
and rate-limiting. All above approaches are static allocation and lack
of work conservation. Aquila [19] leverages a receiver-driven solici-
tation scheme and a custom cell-switched substrate to achieve low
latency. PicNIC [37] and Justitia [62] consider ingress/egress engine
processing capacity isolation at the end host. Based on ElasticSwitch,
Trinity [26] leverages priority queues to prioritize the traffic of band-
width guarantee over that of work conservation, thereby achieving
low latency for short flows. By contrast, `FAB limits the burst size to
achieve both bounded latency and work conservation simultaneously,
with a single queue.

Informative core : Existing works leverage the network information
from programmable switches for many aspects, such as HPCC [40]
for congestion control, Clove [31] for load balancing, NetSeer [64]
for monitoring, etc. By contrast, `FAB is the first that defines the
critical information for providing predictable fabric service and
builds a dynamic-path framework with active edge and informative
core fusion.

8 CONCLUSION
We believe the newly available programmable data plane is the key
to solving the exceptional challenges of providing predictable virtual
fabric in multi-tenant DCNs – `FAB is such an example. `FAB con-
structs a predictable virtual fabric service via a fusion of an active
edge and an informative core. Its innovation lies in the simple and
effective mechanisms to make the whole network converge to the pre-
dictable tenant-level performance (e.g., guaranteed bandwidth and
bounded latency) and high utilization at sub-millisecond timescales.
We demonstrate that `FAB can be efficiently implemented with
commodity smart NICs and programmable switches.
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APPENDIX

Appendices are supporting material that has not been peer-reviewed.

A RELATED WORK
Table 1 summarizes the previous works and `FAB. `FAB is the first
that leverages the informative data plane to ensure the end-to-end
predictability of VF in bandwidth guarantee, work conservation and
bounded latency simultaneously.

B NOTATION
Table 2 lists the notations used in this paper, where the top part lists
all the notations required by `FAB, while the ones in the bottom part
help to illustrate the design of `FAB.

C THE ANALYSIS OF `FAB’S THEORETICAL
PROPERTIES

In this Section we review some of the theoretical background to
fairness and to convergence properties of dual congestion control
algorithms.

C.1 Fairness
Suppose there are resources 8 = 1, 2, · · · , � and paths 9 = 1, 2, · · · , � .
Let � be the incidence matrix containing only zeroes and ones
defined by �8 9 = 1 if resource 8 is used by path 9 and �8 9 = 0
otherwise; assume each path uses at least one resource, so that no
column of � is identically zero. Let ⇠8 > 0 be the (target) capacity
of resource 8, for 8 = 1, 2, · · · , � , and define the vector ⇠ = (⇠8 , 8 =
1, 2, · · · , � ). A rate allocation is a vector G = (G 9 , 9 = 1, 2, · · · , � ). Let
~8 be the load on resource 8 and let ~ = (~8 , 8 = 1, 2, · · · , � ). From the
definition of the matrix � we have that ~ = �G . Note that the vector
inequality ~ = �G  ⇠ is satisfied if and only if the load on each
resource is less than or equal to the (target) capacity of the resource.

Let F 9 > 0, 9 = 1, 2, · · · , � , be a set of weights, and let U 2 (0,1)
be a fixed constant. The weighted U-fair allocation G = (G 9 , 9 =
1, 2, · · · , � ) is, for U < 1, the solution of the following optimization
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(a) Primal control (Eqn 3)
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Figure 19: Illustration of `FAB’s convergence.

problem

maximize
’
9

F 9

1 � U

✓
G 9
F 9

◆1�U
over G � 0,�G  ⇠ . (4)

For U = 1 it is the solution of the same optimization problem but
with objective function

Õ
9 F 9 log(G 9/F 9 ), the natural continuation

of the objective function through U = 1 [35, 41].
The solution to this optimization problem takes the form

G 9 = F 9

 ’
8

�8 9'
�U
8

!�1/U
(5)

where ' = ('8 , 8 = 1, 2, · · · , � ) are a set of link rates: '8 is the rate
which would be allocated to a source of unit weight whose path went
through just one resource, resource 8.

Note that as U !1 the expression (5) approaches

G 9 = F 9 min
8:�8 9=1

{'8 }

corresponding to weighted max-min fairness as used in §3. The case
U = 1 corresponds to weighted proportional fairness. If F ⌘ 1 then
as U ! 0 the expression (5) approaches the rate allocation which
maximizes the sum of rates over all paths [35].

Max-min is the fairness criterion most commonly discussed for
communication networks, but it can place too much emphasis on fair-
ness over efficiency. Proportional fairness has preferable efficiency
properties in networks with routing choices and heterogeneous load-
ings [46].

C.2 Equilibrium rates and convergence
Suppose now the link rates '(=) at time = are updated in discrete
time by the recursion

~ (=) = �G (=) (6)

'8 (= + 1) = '8 (=)
⇠8

~8 (=)
(7)

where the sending rates G are given by the expression (5). In discrete
time, with exactly one RTT needed to update the sending rates,
this corresponds to the update rule in §3.3. An equilibrium point
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Systems Strict Bandwidth Isolation Low
Latency

Multipath
Awareness

Topology
Requirement

Network Device
RequirementTenant-level

Guarantee
Work

Conservation
Convergence

Speed
QJUMP[20], Chameleon[54] 7 7 �⇤ 3 �‡ None Priority queues
SecondNet [21], Oktopus [12],
CloudMirror [39], Silo [28] 3 7 �† 3

Static
routing None None

Seawall [51],
FairCloud [44] (PS-L/N) 7 3 10⇠200ms 7 �‡ None ECN

NetShare [38] 7 3 10⇠200ms 7 �‡ None Per-tenant queue

ElasticSwitch [45] 3 3 10⇠200ms 7
Ideal

assumption None ECN

Trinity [26] 3 3 10⇠200ms Short flow Ideal
assumption None Priority queues, ECN

FairCloud [44] (PS-P) 3 3 10⇠200ms 7
Ideal

assumption Tree topology Per-tenant queue

Hadrian [13] 3 3 5⇠10ms 7
Ideal

assumption Tree topology Programmable

Proteus [60], EyeQ [29],
HUG [16], GateKeeper [49] 3 3 5⇠10ms 7 �‡ Congestion/loss-free

fabric None

PicNIC [37] 3 Partial 5⇠10ms Host side �‡ Congestion/loss-free
fabric None

`FAB (Our work) 3 3 <1ms 3 3 None Programmable

Table 1: Related systems. ⇤The work cannot isolate network performance; †The work reserve bandwidth or use network calculus.
‡The work do not aim at providing tenant-level guarantee in the fabric.

Notation Description Source

⌫D Minimum bandwidth a unit token can give to a VM-pair Prior knowledge
)0!1 baseRTT between 0 and 1 without queuing Prior knowledge
�; Total bandwidth token of all active VM-pairs on link ; `FAB-C
⇠; Target bandwidth capacity for link ; `FAB-C
CG; Link ;’s actual TX rate `FAB-C
@; Link ;’s real-time queue size `FAB-C
,; Total sending window of all active VM-pairs traversing link ; `FAB-C
q0!1 Bandwidth token allocated for VM-pair 0 ! 1 `FAB-E
F0!1 Sending window size of VM-pair 0 ! 1 on path ?0!1 `FAB-E
F;
0!1 Sending window size of VM-pair 0 ! 1 on link ; Eqn (3)

⌫0!1 Minimum bandwidth guarantee for VM-pair 0 ! 1 \
?0!1 Flow path of VM-pair 0 ! 1 \
A ;0!1 Proportional bandwidth share of VM-pair 0 ! 1 on link ; \
A0!1 Minimum proportional bandwidth share of VM-pair 0 ! 1 along path ?0!1 \
';
0!1 Sending rate of VM-pair 0 ! 1 on link ; \

'0!1 Sending rate of VM-pair 0 ! 1 on path ?0!1 \
'; Total sending rate of all active VM-pairs traversing link ; \

Table 2: List of notations. The top part lists all the notations required by `FAB, while the ones in the bottom part help to illustrate the
design of `FAB.

of the recursion (6)-(7) is exactly a solution to the optimization
problem (4).

Figure 19 illustrates the convergence of the primal control and
dual control. It only provides a rough intuition and should not be
considered a formal proof. The actual convergence delay in both
cases may vary due to the random arrivals, actual RTT variance, etc.
Figure 19a shows that the primal control of Eqn 3 takes 2 RTTs to
let the senders to learn the burst traffic demands and thus the peak
latency spike is roughly bounded within the double of the maximum
base RTT in the network. Figure 19b shows that the dual control
of Eqn 7 takes about 4 RTTs to converge. It spends first RTT to
notice the traffic bursts by computing '(C2). Then, it waits for the
second RTT for senders to piggyback '(C2) as their sending rate.
After the propagation delay of 1-2 RTTs, the switch receives all the
traffic amount dictated by '(C2) and computes the next rate '(C5)
accordingly.

The difficulty with the recursion (6)-(7) is that its convergence is
very sensitive to RTTs. The stability of similar algorithms has been
investigated by several authors using a variety of simplified models
[11, 30, 33, 56]. The main insights we draw from previous work are
firstly that the rate of adaptation should be scaled to round-trip times
in order to avoid destabilising oscillations, and secondly that while
feedback based on queue size is important for dealing with transient
overloads, it is not helpful for steady state stability when we already
have feedback based on rate mismatch. (Observe that the queue size
is simply the total rate mismatch over the random period since the
queue was last empty, and thus does not give information additional
to rate mismatch.)

In HPCC [40], convergence of utilization was fast but conver-
gence to fairness was slower, since it needed to be effected by an
AIMD scheme implemented at sources. In the approach of this paper,
the parameters ' = ('8 , 8 = 1, 2, · · · , � ), or their scaled versions, one
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for each resource, allow fast convergence for both utilization and
fairness. In the next Section we show the importance of these param-
eters, and how they can in principle be computed at the sources from
measurements made at resources and conveyed back to sources.

C.3 Impact of delayed feedback
To understand the impact of delayed feedback on stability we review
existing theoretical results.

For each 8, 9 such that �8 9 = 1, let)98 be the delay from the source
of flow on path 9 to the resource 8, and let )8 9 be the return delay
from resource 8 back to the source. Then

)98 +)8 9 = )9 (8)

where )9 is the round-trip delay on path 9 . Consider the continuous
time model

3

3C
'8 (C) = ^

'8 (C)
)̄8

✓
1 � ~8 (C)

⇠8

◆
(9)

where
~8 (C) =

’
9

�8 9G 9 (C �)98 ) (10)

is the aggregate load at resource 8, the rate G 9 is given by

G 9 (C) = F 9

 ’
8

�8 9'8 (C �)8 9 )�U
!�1/U

(11)

and

)̄8 =

Õ
9 �8 9G 9 (C))9Õ
9 �8 9G 9 (C)

(12)

is the average round-trip delay over all packets passing through
resource 8. The equilibrium of the dynamical system (9)-(11) is the
weighted U-fair allocation and is locally stable [33] if

^ <
c

2 .

Important points to note are that the stability result does not depend
on U , i.e. which fairness criterion is used, nor on the heterogeneity
of round-trip delays, nor on the topology of the network. The scaling
in expression (9) shows that the speed of adaptation of '8 should be
inversely related to the average round-trip delay )̄8 . We do not need
to know )̄8 precisely, we simply need to ensure that we can bound it
above since the condition on ^ is an inequality.

D SIMULATION OF HETEROGENEOUS
RESPONSE DELAYS

We use NS-3 simulations to evaluate the impact of asynchronous
responses received by different senders on the convergence of `FAB,
since a lot of ancillary work needs to be done before deploying `FAB
in a real large-scale production data center. We randomly generate
background traffic at 50% load and then select 128 senders and 1
receiver to generate incast traffic.

Figure 20a shows that the senders receive probe responses asyn-
chronously, even with the time gap beyond 1 RTT (the time between
the two red lines). The response time is organized into 40 rounds,
that is, when the sender receives a new response, the number of
response rounds increases by 1. The response time difference is
calculated based on the median of the response time within the same
response round. This suggests that different senders get responses

(a) Response time difference (b) Rate evolution

Figure 20: Convergence with asynchronous responses.

a1

a6a2

a5

a4

!!
3

!!
3 		

!!
3

!! → 	23 !
!

(a) Sufficient demand

a1

a6a2

a5

a4

!!
3 → 	!

! − &
2

!!
3 	→ &	

!!
3 → 	!

! − &
2

2
3 !

! →!! + &
2

(b) Insufficient demand

Figure 21: Example of `FAB’s token assignment.

asynchronously, which is consistent with the experiment phenome-
non. Figure 20b shows the rate evolution of one sender. We can see
that even with asynchronous responses, the sending rate converges
quickly.

E TOKEN ASSIGNMENT
We present the algorithm to partition a VF’s minimum bandwdith
gurantee into VM-to-VM guarantees under online traffic patterns.
The algorithm solves this problem via pairwise token assignment.
The actual traffic is either bounded by the sender’s or the receiver’s
capacity. We have in total qU tokens in both sides for minimum
bandwidth guarantee ⌫U<8= at the VF U , where we have qU =

⌫U
<8=
⌫D

and ⌫D is predefined bandwidth for a unit token. On the one hand,
the sender apportions tokens across VM-pairs to fully utilize the
bandwidth and conveys the allocated token as “demand” to the
receiver. The receiver, on the other hand, responds the demand using
max-min fair sharing. We explain the details with an example in the
following.

Figure 21a shows an example of token assignment algorithm with
four VM-pairs. Initially, each sider equally distributes qU for all
active VM-pairs, so that q01!04 = q01!05 = q01!06 = qU

3 and
q02!06 = qU . The receiver uses max-min fairing to arbitrate the
incoming token demands with responses. For example, 06 reponds
q01!06 =

qU

3 and q02!06 =
2
3q

U to 01 and 02 respectively.
Right now, we only talk about assignment with sufficient traffic

demand. Figure 21b shows the case where VM-pair 01 ! 04 has
insufficient traffic demand of n. Each sender keeps monitoring the
actual TX rate for each VM-pair. When a VM-pair’s actual TX rate
is less than its assigned token in last epoch, the sender redistributes
the spare tokens to other VM-pairs for work conserving. As the case
in Figure 21b, 01 redistributes the spare capacity to the remaining
VM-pairs so that q01!05 = q01!06 = qU�n

2 . After one iteration,
VM-pair 02 ! 06 would adapt to q02!06 =

qU+n
2 .

Our framework supports several options to redistribute the tokens
from VM-pair of insufficient demand. ElasticSwitch [45] uses the
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Algorithm 1 Token assignment algorithm. qU is the hose model weight
of VF U . V is a group of VM-pairs either from sender or towards receiver;
each VM-pair has three fields: CG is its actual TX rate, q( is sender assigned
token, and q⇡ is receiver admitted tokens.

1: procedure TOKENASSIGNMENT(qU , V ) ù Sender
2: . = 0, # 0 = 0, #( = |V |, 8? in V ,? .q( = 0;
3: q̄ = qU

#(
;

4: for each VM-pair ? in V do
5: if q̄ > ? .CG

⌫D
then

6: .+ = (q̄ � ? .CG
⌫D

);
7: ? .q( = ? .CG

⌫D
; ù Bouned by demand but sender still admits

q̄ .
8: # 0+ = 1;
9: q̄+ = .

#(�# 0 ;
10: VB = (>AC (V ); ù Ascending on q⇡

11: for each VM-pair ? in VB do
12: if ? .q⇡ < q̄ and ? .q( = 0 then
13: # 0+ = 1;
14: q̄+ = ( q̄�? .q⇡

#(�# 0 );
15: ? .q( = ? .q⇡ ; ù Bounded by receiver
16: for each VM-pair ? in V do
17: if ? .q( = 0 then
18: ? .q( = q̄ ; ù Redistribute unused tokens.

return V ;
19: procedure TOKENADMISSION(qU , V ) ù Receiver
20: # 0 = 0, #⇡ = |V |;
21: q̄ = qU

#⇡
;

22: VB = (>AC (V ); ù Ascending on q(

23: for each VM-pair ? in V do
24: if ? .q( < q̄ then
25: ? .q⇡ = *#⌫$*#⇡;
26: # 0+ = 1;
27: q̄+ = q̄�? .q(

#⇡�# 0 ; ù Redistribute unused tokens.
28: else
29: ? .q⇡ = q̄ ;
30: return V ;

measured demand as the guarantee and, once satisfied, exponetially
increases its guarantee to reach fair-sharing. Here we propose another
option. We assign at least the fair-sharing token to each VM-pair
even if its demand is insufficient (Line 7 in Algorithm 1). The key
point is that it gives the VM-pair a rapid way to grow its bandwidth
when it has immediate traffic demand. In the worst case, we only
assign double the VM-pair’s token to the network in one RTT. Thus,
the bandwidth and latency are still bounded and they should converge
very fast. The full algorithm is presented in Algorithm 1.

F SUPPORT MULTIPLE UNDERLAY PATHS
PER VM-PAIR

`FAB supports to use multiple underlay paths for each VM-pair and
allows tenant applications to spread traffic over them. We ensure that
VM-pair token assigned from Algorithm 1 is properly distributed
onto paths, while ensuring fairness and work conserving properties.

Algorithm 2 shows the overall procedure. To ensure fairness, we
split the total VM-pair token equally to all paths initially (Line 3).

In case some path has insufficient traffic demand, we dynamically
redistribute the spare capaity to other paths for work conserving
(Line 11). Nevertheless, we admit each path at least a fair-sharing to-
ken even if it has insufficient traffic demand (Line 7). This approach
boosts traffic demand growth with slightly more traffic in one RTT.

Algorithm 2 Multipath token assignment algorithm. q( is sender assigned
token for the VM-pair. R is a group of paths used by the VM-pair; each path
in R has two fields: actual TX rate CG and token q to be assigned.

1: procedure MULTIPATHASSIGNMENT(q( , R)
2: . = 0, # 0 = 0, #! = |R |, 8; in R, ; .q = 0;
3: q̄ = q(

#!
; ù Ensure fairness.

4: for each path ; in R do
5: if q̄ > ; .CG

⌫D
then

6: .+ = (q̄ � ; .CG
⌫D

);
7: ; .q = q̄ ; ù Boost demand growth.
8: # 0+ = 1;
9: for each path ; in R do

10: if ; .q = 0; then
11: ; .q = q̄ + .

#!�# 0 ; ù Redistribute unused token.
return R;

G PACKET FORMAT
Figure 22 shows the probe/response packet format of `FAB. We
use standard SR header to enforce source routing, followed by our
customized INT header. The field type is used to distinguish between
probe packet, response packet and failure notification packet. The
field nHop represents the number of hops passed by the data packet,
and also indicates how many switches’ INT information is contained
in the following fields. The field q0!1 is the bandwidth token al-
located for VM-pair 0 ! 1 by end host. For probe, it is the token
assigned by sender; for response, it is the one assigned by receiver.
The INT information of each hop consists of 5 fields, i.e., , ;

0!1
(,; ), q; , CG; , @; and⇠; ., ;

0!1 and,; share the same field, where the
former carries the sending window of VM-pair 0 ! 1 traversing link
; , and after it is read by switches, the switch inserts the aggregated
sending window information represented by,; . The field q; is the
total active tokens maintained by switch’s Bloom Filter. The last
three fields represent the network load status and network capacity.

type (4 bits) : the type of the packet. 1 for probe, 2 for response, 4 for failure response.
nHop (4 bits) : the number of switches the packet has passed through.
!!→#	 (24 bits) : the sender-side (or receiver-side) bandwidth token allocated for VM-pair # → $, if type is 1 (or 2) .
%!→#

$ (16 bits) : the sending window of VM-pair #→ $ traversing link &. It is replaced by '% 	after the switch 
inserts VF information.
%$	(16 bits) : the total sending window of all VM-pairs traversing link &.
!$ (16 bits) : the total token of all active VM-pairs on &.
()$ (16 bits) : the actual TX rate of link&.
*$ (12 bits) : the real time queue size of link &.
+$ (4 bits) : the type of speed of the egress port, e.g., 10Gbps, 100Gbps, etc.

SR
Header

nHop
(4 bits)

Φ&→'
(16 bits)

1st Hop (64 bits) 2nd Hop
(64 bits)

MAC
Header

IP
Header

type
(4 bits)

…
Φ%'&→'% / '% -.% /% 0%

Figure 22: The probe/response packet format of `FAB.

H THE RESOURCE CONSUMPTION OF
`FAB’S IMPLEMENTATION
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Modules LUT(%) Registers(%) BRAM (%) URAM(%)
Packet Scheduler 0.8% 1.1% 0.8% 5.7%
Context Tables 0.2% 0.2% 4.6% 3.1%
Path Monitor 0.9% 0.7% 4.8% 0.6%
TX/RX pipes 0.3% 0.1% 1.2% 0.0%

Vendor Modules 5.5% 3.6% 5.0% 0.0%
Total 7.6% 5.8% 16.4% 9.5%

Table 3: `FAB-E’s hardware resource consumption based on
Xilinx Alveo U200 card. Each number indicates the percentage
of resources consumed for the corresponding type.

Resource Type 20K 40K 80K
Match Crossbar 8.64% 8.64% 8.64%
SRAM 17.29% 17.71% 18.75%
TCAM 6.25% 6.25% 6.25%
VLIW Actions 18.23% 18.23% 18.23%
Hash Bits 17.03% 17.05% 17.07%
Stateful ALUs 47.92% 47.92% 47.92%
Packet Header Vector 20.05% 20.05% 20.05%

Table 4: For different numbers of VM-pairs, resource consump-
tion of `FAB-C prototype on Intel Barefoot Tofino. Each number
indicates the percentage of resources consumed for the corre-
sponding type.


