Achieving Consistent Low Latency for Wireless
Real-Time Communications with the Shortest Control Loop

Zili Mengl’z, Yaning Guo!, Chen Sun?, Bo Wangl,
Justine Sherry®, Hongqiang Harry Liu?, Mingwei Xu®*
Tsinghua University 2Alibaba Group *Carnegie Mellon University *Zhongguancun Laboratory
zilim@ieee.org, gynl7@tsinghua.org.cn, gqichen.sc@alibaba-inc.com, wangbo2019@tsinghua.edu.cn

sherry@cs.cmu.edu,

Abstract

Real-time communication (RTC) applications like video conferenc-
ing or cloud gaming require consistent low latency to provide a
seamless interactive experience. However, wireless networks in-
cluding WiFi and cellular, albeit providing a satisfactory median
latency, drastically degrade at the tail due to frequent and substantial
wireless bandwidth fluctuations. We observe that the control loop
for the sending rate of RTC applications is inflated when congestion
happens at the wireless access point (AP), resulting in untimely rate
adaption to wireless dynamics. Existing solutions, however, suffer
from the inflated control loop and fail to quickly adapt to bandwidth
fluctuations. In this paper, we propose Zhuge, a pure wireless AP
based solution that reduces the control loop of RTC applications by
separating congestion feedback from congested queues. We design a
Fortune Teller to precisely estimate per-packet wireless latency upon
its arrival at the wireless AP. To make Zhuge deployable at scale, we
also design a Feedback Updater that translates the estimated latency
to comprehensible feedback messages for various protocols and
immediately delivers them back to senders for rate adaption. Trace-
driven and real-world evaluation shows that Zhuge reduces the ratio
of large tail latency and RTC performance degradation by 17% to 95%.

CCS Concepts

« Networks — Routers; Wireless access networks.

Keywords
Real-time communications, congestion control, wireless network.

ACM Reference Format:

Zili Meng, Yaning Guo, Chen Sun, Bo Wang, Justine Sherry, Hongqgiang Harry
Liu, Mingwei Xu. 2022. Achieving Consistent Low Latency for Wireless Real-
Time Communications with the Shortest Control Loop. In ACM SIGCOMM
2022 Conference (SIGCOMM °22), August 22-26, 2022, Amsterdam, Netherlands.
ACM, New York,NY, USA, 14 pages. https://doi.org/10.1145/3544216.3544225

1 Introduction

Real-time communication (RTC) applications like video conferenc-
ing [17, 47], cloud PC [42], and cloud gaming [8] are now prevalent

Zili, Yaning, Bo, and Mingwei are with Institute of Network Sciences and Cyberspace,
also with Beijing National Research Center for Information Science and Technology.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9420-8/22/08.

https://doi.org/10.1145/3544216.3544225

honggqiang.liu@alibaba-inc.com, xumw@tsinghua.edu.cn

Last-mile

Sender access point Receiver
(i) Downlink queue ("i)WDirOeV‘Ve”S‘é”k
Eh S . ISR
-_—] > —
. -l : —
(v) Uplink (iv) Uplink queue (‘\I,\‘/)ir% e“;;k
Reaction Congestion Reflection
Point oint Point

Figure 1: Control loop for rate adaption at the wireless last mile.
Compared with existing solutions, Zhuge bypasses the segment (i) - (iii)
to achieve the shortest control loop.

in business and daily life. To provide a satisfactory user’s experience,
RTC applications require consistent low latency, even at the tail.
For example, video conferencing demands consistent latency below
150ms [38], and cloud gaming demands under 96ms [39]. However,
our analysis of a large-scale online live streaming platform with mil-
lions of daily active users (§2) shows that the median RT T of wireless
users today is below 100ms (comparable to that of Ethernet users),
but the 99th percentile tail latency is ~ 400ms. Intuitively, latency
spikes at the 99th percentile indicate that RTC application users can
experience one delayed video frame per every 100 frames (i.e. once
every 5 seconds for a 20fps stream), which severely compromises
user experience. Following this intuition, our measurements of the
same system reveal that wireless users (including WiFi and cellular)
encounter 2X more video rebuffering than Ethernet users.

Transient congestion at wireless links is caused when available
bandwidth for a user drops suddenly, e.g., due to multi-user access
and mutual interference. Available bandwidth of wireless networks
can drop by 10X at the 99th percentile (§2.3). After such a sudden
drop, packets quickly begin to queue at the AP, increasing end-to-end
latency. Ideally, senders would react quickly when bandwidth reduc-
tion occurs, e.g., by reducing their bitrate to prevent queue buildup,
high latency, and loss. Unfortunately, we observe that senders are
fundamentally limitedin how quickly they canreact, and itis precisely
when queues build up that senders react most slowly!

The problem is that congestion signals are carried along the same
congested path as data packets. Put simply, to observe that the bottle-
neck queue is filling, a sender must first receive an acknowledgement
from a packet that has actually waited in that queue. Hence, conges-
tion indicators like timestamps or losses take longer to reach the
sender when the sender most needs these indicators. In Figure 1,
we show the route taken both by data packets and the control sig-
nals they carry, in-band/explicitly (such as timestamps) or out-of-
band/implicitly (such as their RTT).

Our key insight in this paper is that we can decouple the control
loop from the full path that data packets traverse, hence protecting
control signals from experiencing the full latency of filling, often
buffer-bloated [60] queues. A carefully designed AP, on observing

https://doi.org/10.1145/3544216.3544225
https://doi.org/10.1145/3544216.3544225

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

a filling downlink queue (i in Figure 1) can modify or delay packets
in the uplink queue (iv in Figure 1), allowing congestion signals to
reach the sender without the delay of the congested bottleneck.

Substantial research literature aims to improve network latency
for wireless networks, but these approaches primarily succeed at
improving median rather than taillatencies of RTC applications in
the wireless network. We argue that the problem primarily stems
from the fact that all of these approaches rely on a delayed control
loop due to congestion signals needing to traverse the congested,
high-latency path. For example, end-based solutions such as con-
gestion control algorithms (CCAs) collect end-to-end signals (e.g.,
per-packet delays) at the sender to adjust the sending rate. However,
one (inflated) control loop is still needed to collect the signals af-
ter sending a packet. Similarly, in-network solutions such as active
queue management (AQM) create signals (e.g., packet drops) but
these signals still have to be bounced by the receiver to the sender,
which, again, suffers a long control loop.

While our key insight is straightforward, implementing it success-
fully in practice is challenging:
How can an AP predict packet latency for packets which have not yet
been transmitted? Naively, an AP might simply measure the number
of bytes queued in the downlink queue and divide by the available
link capacity to measure a queuing delay. However, recall that link
bandwidth is fluctuating (hence our problem) and so such an esti-
mator is likely to be inaccurate.

How should the AP report the message back to the sender in a deployable
way? A straightforward solution is enabling routers to directly trans-
mit newly defined messages back to senders (e.g., XCP [41] or active
network [25]). However, coordinating AP and senders that are usu-
ally maintained by different entities (§2.3) builds barriers for deploy-
ment at scale. Moreover, for existing deployed protocols at the sender,
some use explicit signaling (e.g., timestamps) while others use im-
plicit or out-of-band signaling (e.g., the RTT or RTT gradient). Some
protocols react to a weighted moving average of the RTT [18]; some
protocols are concerned with minimum RTT values over a particular
window [12]; and some protocols react to inter-packet timings and
are not concerned with RTT at all [19]. The AP must modify or delay
upstream packets in a way that faithfully captures all of these factors,
so that neither the sender nor the receiver requires modification.

Addressing these challenges, this paper presents Zhuge' that
achieves consistent low latency? in wireless environments by min-
imizing the control loop. Zhuge includes a ‘Fortune Teller’ module
that, on packet arrival at the downstream queue, makes a prediction
as to that packet’s delay to the receiver and back to the AP. The
Fortune Teller separately estimates two factors influencing queuing
delay (§4.1) and uses these to derive a combined prediction for every
arriving packet. The second component of Zhuge is a ‘Feedback
Updater’ which modifies upstream packets. Depending on the pro-
tocol, these modifications are based on either the raw packet delays
recorded by the Fortune Teller, or differences of packet delays (details
in §5.2) derived from the Fortune Teller.

We have implemented Zhuge in both simulation and with a WiFi-
router based testbed (§7). Evaluation results with real-world wireless

1Zhuge is a famous fortune-teller in ancient China.

2We mainly focus on recent CCAs that are designed to maintain a low latency, but fail
to consistently achieve a low latency. Buffer-filling CCAs that suffer from a high RTT
all the time (e.g., CUBIC [32]) are not our target.

Zili Meng et al.

Narayanan et al.
(2020) [51]

Tail latency of the 5G hop does not improve
against 4G, and could be around 200ms.

Daldoul et al. 802.11ax (a.k.a. WiFi 6) has an average WiFi-hop
(2020) [22] latency of >30ms with 30 interferers.

Bhartia et al. More than one quarter of 802.11ac access points
(2017) [15] sufferfrom a latency of >100ms at the last hop.

Ghoshal et al. Maximum latency does not improve much for

(2022) [30] median users between 5G mmWave and 4G LTE.

Table 1: Recent measurement results of the wireless network latency.

10°0f3 —o— 4wGiFi 10° %:H \lllvGiFi 101
-1 o o
w 1071 Ethernet 107 Ethernet B
s \9\8 ;

=103 2 3| —o— WiFi
o 10 10 i

3 4 Ethernet

-5
10 0.0 04 08 1.2 16 0 0.0 0.4 08 1.2 1.6
RTT (sec) Frame Delay (sec)

08 6 4 2

Frame Rate (fps)
Figure 2: Comparison of RTT and video transmission quality of WiFi,
4G, and Ethernet according to data from a large-scale online RTC
application with O(1M) users every day. Frame delay refers to the
delay measured at the application layer.

traces and configurations for both WiFi and cellular show that Zhuge
improves key metrics on network conditions (e.g., tail latency) and
application performance (e.g., video frame delay) by 17% to 95%. Fur-
ther evaluation also shows that Zhuge is able to achieve satisfactory
performance in the real world in different scenarios.

2 Background and Motivation

In this section, we use real-world statistics to reveal the status of wire-
less tail latency (§2.1). Next, we analyze why existing solutions fail
to achieve consistent low latency (§2.2). Finally, we present our mo-
tivation of reducing the control loop to ameliorate tail latency (§2.3).

2.1 Understanding Wireless Tail Latency
We first answer the following two questions:

Why is the tail latency critical for RTC applications in wire-
less networks? Recent booming RTC applications not only require
low latency in the median, but also demand consistent low latency
at the tail. For example, suppose that most of the time, wireless users
could experience a satisfactory RTT of <100ms. However, if the 99th
percentile network RTT is >400ms, the network latency would far ex-
ceed the delay budget of applications [46, 50]. In this case, one frame
out of 100 may suffer high latency, severely degrading user experi-
ence. Therefore, reducing tail latency is critical for RTC applications.

However, current wireless access network performance is not sat-
isfactory at the tail. We back this argument with several observations.
First, existing literature unveils the long tail latency even with ad-
vanced access technologies. We summarize measurement results in
recent years in Table 1. Even with WiFi 6 (802.11ax) or 5G (mmWave),
wireless networks still do not perform well. This is consistent with
our investigation of content providers. “When experiencing net-
work issues, plug your computer into a wired Ethernet connection if
possible”, stated in the guide of a cloud gaming provider [8]. Latency-
sensitive applications turn out to prefer inconvenient but stable cable
networks due to the high tail latency of wireless networks.

In addition, our own measurement results of an online real-time
communication service, which serves millions of users every day
(measurement methodology in Appendix A), also reveal degraded tail
performance in wireless networks. We present the measurements

Zhuge

control loop 99.9%

8 b= o, 99%

< 98% ABC (4

S| txRate rxRate w T g

;%c reduced (sender-controlled) 8882//0 |C"i{jy°9{g 4g/5g)

el - ‘. — e

g I wf dlisln
! A est. (wifi
Time 0o Office (eth)

—kt—— 0\7/q|
time to drain the X 2x 5x 10x 20x 50x

excessively sent packets txRate Reduction
(a) The bottleneck queue building up and (b) Distribution of wireless available

draining after ABW reduction. bandwidth reduction ratio.
Figure 3: The sudden drop of available bandwidth (ABW) could lead to
transient increases of latency. Solid lines in Figure 3(b) are from open
datasets [31, 49, 62] and dashed lines are measured on our testbed. ABW
is the average value measured in a window of 200ms. Details in §7.2.

of network conditions and application performance of Ethernet,
WiFi, and 4G access networks. As shown in Figure 2, most of the
time, wireless networks could provide a satisfactory RTT of <100ms.
However, the 99th percentile RTT for wireless networks is as high as
>400ms, which far exceeds the network latency budget for applica-
tions [46, 50]. The application-layer metrics also expose similar pat-
terns: wireless users encounter 2X more video lags (long frame delay)
than Ethernet users. Furthermore, the ratio of frame rate drops (video
stalls) of wireless networks is 10X higher than that of wired networks.

Why does wireless latency fluctuate at the tail? The outstanding
tail latency is caused by the transient mismatch of sending rate at
the sender and available bandwidth (ABW) at the bottleneck queue.
We illustrate the transient mismatch from the view of the bottleneck
queue in Figure 3(a). When the ABW of one RTC flow suddenly
drops by kX at the bottleneck router (the solid blue line), it takes
one control loop 7 for the CCA to reduce its sending rate (the green
dashed line). During this period, the bottleneck queue still receives
packets from the sender at its original sending rate. Thus, the queue
builds up due to these excessive packets, as shown in the red shadow.

The duration of congestion is further amplified since it takes much
longer to drain those excessively sent packets from the queue. Specif-
ically, the packets that arrived at the bottleneck queue during the
control loop 7 would need k7 in total to be sent out. During this
period, all packets sent out would experience an increased latency,
degrading the user’s experience.

Therefore, the transient increase of latency depends on (i) how
violent the ABW fluctuates (k), and (ii) how soon the sender reacts (7).
As for the ABW fluctuation k, wireless channels are naturally more
fluctuating than wired channels due to their variability. We calculate
the available bandwidth every 200ms, during when the CCA should
respond to such fluctuations, considering the RTT. from several open
datasets and also our own measurements in the office and restaurant
(details in §7.2). As shown in Figure 3(b), for all wireless datasets
including 5G mmWave and 5GHz-band WiFi, 0.6-7.3% of ABW re-
duction rates are above 10X, which is much higher than the <0.1% of
wired networks. As for the control loop 7, in most cases, the conges-
tion controller needs one RTT to adjust the sending rate upon receiv-
ing the congestion signals (e.g., increased delay, packet losses). When
the bottleneck queue starts to build up, the end-to-end RTT also in-
flates, further preventing the congestion signals from reaching the
sender. Consequently, the end-to-end latency will fluctuate at the tail.

2.2 Existing Solutions

The reduction of ABW (k) is due to contention in the link layer and
below [40] and is unavoidable in most time (e.g., due to wireless

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

Color:

—o— Cubic

—o— Bbr
Copa

—v— GCe

Duration (sec)
Duration (sec)

Linestyle:

—F

5x 10x 20x 50x | --==-- CoDel
txRate Reduction (k)
(b) CWND (sending rate) reduction.

2x 5x 10x 20x 50x 2X
txRate Reduction (k)
(a) RTT degradation.

Figure 4: The convergence duration after wireless bandwidth drop for
different CCAs and AQMs. RTT degradation duration is the time when RTT
> 200ms. CWND rate reduction duration is the time for CCA re-convergence.

interference). Many transport layer innovations have been proposed
to improve the steady state median latency of a connection. For
example, BBR [18] moves the working point of congestion control
from a full queue in CUBIC [32] to an empty queue. CoDel [52] queue
management also tries to shorten the queue in the steady state in
a variety of network conditions compared with FIFO. Subsequent
research efforts (including congestion control [12, 19, 24] and ac-
tive queue management [34]) further provide insightful thoughts
of maintaining the optimal working point with different feedback
signals. Standing on the shoulders of giants, the median latency for
applications can be nicely controlled. However, they are insufficient
to reduce the tail latency, which we will analyze below.

End host-based solutions. For network layer and above, existing
end host-based solutions fail to quickly adapt to the ABW reduction
due to their long and inflated control loops. Recalling Figure 1, when
the green shaded packet arrives at the congestion point and observes
along queue, it first needs to go through the queue (i), transmitted
to the receiver (ii), the corresponding feedback delivered from the
receiver to the access point (iii), and finally sent to the sender (iv
and v). Since the shortest time for the sender to be notified is one
full control loop including segments (i)-(v), a pure end host-based
CCA cannot timely adapt to transient bandwidth fluctuation. We
further simulate the performance of recent latency-sensitive CCAs
(BBR [18], Copa [12],and GCC [19]) together with AQMs in Figure 4.
When the ABW is reduced by 10X or more, all these algorithms,
working with or without latency-aware AQMs, suffer from seconds
of RTT degradation. The inflated control loop for end host-based
solutions results in severe wireless queuing.

In-network solutions. Solutions modifying in-network devices
also fail to timely feed back these signals. For example, AQM such
as CoDel [52] drops the packets in the front of the queue to reduce
the downlink queuing latency (i) in Figure 1, yet still suffers long
wireless latency (ii) and (iii), which could be more than 100ms [15].
Moreover, AQMs are mostly designed to drop some packets, while
many modern CCAs are designed to be responsive to the increase
of packet delay and insensitive to packet drops [12, 18, 19]. This can
also be validated in Figure 4(a): CoDel can hardly improve the per-
formance of delay-based CCAs such as Copa. There are also a line of
solutions to co-design the hosts and in-network routers for decades
to achieve better feedback from the network, including XCP [41],
RCP [58], Kickass [26], and ABC [31]. However, their design goals
are getting a precise estimation of network conditions from routers,
while the gathered information still needs to go through the full con-
trol loop. We also compare the performance of Zhuge against ABC to
demonstrate the potential room for improvements with host-router

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

co-design and our further improvements in §7.
2.3 Our Proposal: Reducing the Control Loop

Our key insight to reduce wireless tail latency is to separate the
congestion feedback from the congestion by sensing the network
conditions as early as possible, timely carrying the conditions back
to the sender to minimize the control loop, and performing the above
operations in a deployable way.

The earliest signal — one packet knows its fortune upon arrival.
In most cases, when one packet arrives at the bottleneck queue, it
can predict its delay with visibility of the entire queue. For example,
the queuing delay for the packet could be roughly estimated by divid-
ing the queue length with the dequeuing rate. Therefore, when the
dequeuing rate decreases, we can observe increasing queuing delay
upon the arrival of subsequent packets. Compared with other conse-
quent signals such as the packet loss or the measured queuing delay,
the estimated queuing delay is the earliest signal for the reduction
of ABW. Therefore, we are motivated to utilize this earliest signal
to timely control the sending rate and adapt to ABW reduction.

Quickly delivering the earliest signal back to the sender. Merely
finding the ABW reduction signal is not enough. We need to quickly
carry this signal back to the sender. An ideal solution is directly
telling the sender from the bottleneck queue about its current status.
In this way, such a signal could bypass the inflated part of the control
loop (downlink queuing (i), downlink wireless transmission (ii), and
uplink wireless transmission (iii) in Figure 1). Meanwhile, the latency
of the uplink queue at the AP (iv) and the latency of WAN (v) is usually
stable. The uplink of the AP is often the Ethernet connection to the
Internet, usually with hundreds of Mbps capacity. The WAN latency
(v) is the latency between the last-mile AP and the sender. The Eth-
ernet users will also suffer these two parts of control loop, which are
relatively stable according to our Ethernet measurements in Figure 2.

Patching the last-mile router only might be deployable. Re-
viewing the history of transport layer designs, there are a series
of excellent efforts that unfortunately are not widely deployed due
to practical issues. For example, XCP [41], RCP [58], Kickass [26],
ABC [31], and active network [25] in recent two decades all require
modifications on both the server and some or all routers. However,
servers are usually controlled by content providers (e.g., Google,
Facebook), while routers by vendors (e.g., Netgear for APs). Coordi-
nating all these parties to push a new transport innovation forward is
extremely challenging, if not impossible. Different from above work,
Zhuge patches the last-mile AP only, which could reduce the barrier
to deploy at scale. AP vendors could individually implement and
observe the performance benefits without co-operation with content
providers. Moreover, from the view of home users, the last-mile AP
is the only place they can control if they seek a better performance.
We are thus motivated to limit the modifications to the last-mile to
make Zhuge deployable at scale.

3 Zhuge Design

This section presents the design challenges and framework overview
of Zhuge to control the wireless tail latency.

3.1 Design Challenges

Zhuge handles wireless tail latency by reducing the control loop.
However, Zhuge design confronts two major challenges.

Zili Meng et al.

Timely and precise estimation of packet latency for RTC traf-
fic. Zhuge estimates the future latency of a packet upon its arrival
at the wireless last mile to obtain network conditions as early as
possible. A per-packet precise estimation is necessary to properly
guide CCAs in the sender for rate adaption. However, precise latency
estimation is challenging for RTC traffic in wireless environments,
as the bottleneck queue is in a transient fluctuation at a sub-RTT
granularity, due to two reasons.

e Bursty packet arrivals of RTC traffic. RTC applications generate
contents in the unit of a video frame. To reduce the end-to-end
latency, senders tend to burstily send packets of the same frame
out [21]. This indicates that the queue might build up very quickly
even in the steady state.

o Bursty packet departures of wireless channel. The sharing nature
of wireless networks results in the contention of wireless channel
resources and frequent bandwidth fluctuation. Wireless proto-
cols tend to aggregate several packets into one MAC frame (e.g.,
aggregated MAC protocol data unit, or AMPDU, in WiFi) to com-
promise wireless contention. In this case, tens of packets might
be aggregated into one AMPDU and dequeued simultaneously.
Anaive estimation approach is simply dividing the queue length by

the dequeuing rate. However, this approach is faced with a transience-

equilibrium nexus [45]: The dequeuing rate is usually measured over

a sliding window (e.g., 40ms for WiFiin [31]). A short window would

lead to the variability of measurement during the steady state, while

along window misses transient latency fluctuation at sub-RTT gran-
ularity. Thus, it is challenging to timely and precisely estimate the
per-packet latency for RTC traffic at the wireless last mile.

Effective message feedback for various protocols and CCAs.
Zhuge notifies the sender with the estimated wireless network con-
ditions as quickly as possible. A straightforward solution is con-
structing a new type of feedback packets to the sender. However, for
most CCAs deployed in the wild, network conditions such as the cur-
rent available bandwidth are not explicitly delivered on the Internet.
Directly telling the network conditions to the sender would need
modifications at the sender simultaneously to make the message un-
derstandable to the CCA. Asmentioned above, we prefer an AP-based
solution without modifying the sender for deployability at scale.

Making this challenging, transport protocols and CCAs adopted by
real world applications are highly diversified. The headers of trans-
port protocols could be unencrypted (e.g., TCP) or encrypted (QUIC).
To achieve lower latency, RTC applications prefer to customize CCAs,
whichrely on different signals to adjust the sending rate. For example,
some of them modify the TCP CCA in the kernel [5]. For WebRTC-
based applications, network conditions are periodically summarized
into a special feedback packet [55]. Various CCAs make it challeng-
ing to effectively deliver the network conditions to the sender.

3.2 Framework Overview

In response to the above challenges, we design two building blocks
in Zhuge: a Fortune Teller and a Feedback Updater.

To achieve timely and precise prediction of packet latency, we
introduce the Zhuge Fortune Teller in §4 to tell the fortune (future
latency) of each packet upon its arrival. To overcome the transience-
equilibrium nexus and faithfully obtain precise per-packet latency,
we break the latency into different parts and introduce long-term
and short-term estimators. We measure the average dequeuing rate

Zhuge

_, Data packet

Fortune Teller | Pownlink queue
[T (downlink)
Predictions Feedback packet
_, Feedback packe
Feek Updater Cient~ (uplink)
Figure 5: The overall workflow of Zhuge at the last-mile AP. Zhuge

contributes the Fortune Teller and Feedback Updater.
A = (©) totalDelay = qLong + gShort + tx

|)

@

]EEE}’ glong =cur(qSize) / avg(txRate)
_ B qShort = cur(QFrontWaitTime)

B tx
Figure 6: Different delay components that the Fortune Teller will estimate.
gLong and gShort together form the queuing delay at the network layer.
tx is the transmission delay at the link layer.

= avg(dequeuelntvl)

to calculate the long-term queuing delay, and the packet sojourn
time at the front of the queue to respond to short-term fluctuations.

To effectively notify the sender with the latest conditions, we
present the Zhuge Feedback Updater in §5 to convert predicted net-
work conditions to signals that senders can understand. We catego-
rize existing protocols in RTC applications into out-of-band feedback
and in-band feedback. For out-of-band feedback protocols, the ar-
rival of feedback packets are signals to the sender (e.g., ACK packets
in TCP). In-band feedback protocols carry network conditions in the
payload of feedback packets, such as the transport-wide congestion
control feedback (TWCC-FB) packets in WebRTC [35]. Accordingly,
Zhuge designs different feedback mechanisms to carry the latency
back to the sender for a variety of protocols.

The overall workflow of Zhuge is presented in Figure 5. When
a packet arrives at the wireless access point via the Ethernet port,
Fortune Teller would predict its fortune and also forward the packet
as usual to the downlink queue. Feedback Updater will then update
the estimation into the feedback packets in the reverse direction.
If a newly arrived packet observes a degraded network condition
(e.g., increasing queue length), estimated wireless latency could be
immediately applied to feedback packets in the reverse direction of
the same flow. In this way, the earliest signals could be carried back
to the sender, bypassing the queuing delay and wireless transmission
delay of the control loop (part (i)-(iii) in Figure 1).

4 Fortune Teller

Telling the fortune of a packet is to predict when it will arrive at
the client, i.e., the subsequent delay it will experience. In a wireless
network, such delay can be decoupled into two segments [33], in-
cluding (i) Queuing delay: the delay between the packet arriving
at the access point, and the packet leaving the queue disciplines
to the underlying driver (i.e., the delay in the network layer). (ii)
Transmission delay: the delay between the packet being passed to
the wireless driver, to the time it arriving at the receiver (i.e., the
delay in the link layer). Next we introduce how to timely predict
these two delays respectively.

4.1 Queuing Delay Prediction

Asdiscussed in §3.1, the strawman solution of dividing the queue size
by the dequeuing rate confronts the transience-equilibrium nexus. A
short sliding window will lead to drastic fluctuations of the predicted
delays due to the bursts of arrivals and departures, and a long win-
dow will fail to quickly detect the change of network conditions. In

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

lABW drop —o— txRate (measured
—&— gSize
& glong
—O— gShort
j A
Time (ms)

0 5 10 15 20 25
Figure 7: How gLong and gShort react to the ABW drop at 5ms.

response, we analyze how to capture the latency fluctuation incurred
by the two reasons respectively.

o Bursty packet arrival of RTC traffic. The bursty RTC traffic quickly
builds up the wireless queue. Our design choice is to predict the
packet fortune for each packet instead of on a periodic basis. In
this way, the delay differences within a burst of RTC traffic can be
captured by taking the queue size observed by each packet as input.
Bursty packet departure of wireless channel. Bursty packet depar-
ture introduces transient glitches to the dequeuing rate at the mil-
lisecond timescale, which is easily averaged and therefore missed
with existing sliding window-based measurements. Our main ob-
servation is that when the dequeuing rate is suddenly reduced, an
instantly measurable signal is the waiting time of the packet at the
front of a queue (denoted as the front packet). For example, when
the channel starts to become busy, the packet at the front of the
queue has to wait for more time to get a chance to be transmitted.
Since the causes of delay are different when the packet is at the
front of the queue and is not, we decouple the queuing delay into
two parts: long-term queuing delay (gLong) and short-term queuing
delay (qShort), as shown in Figure 6. Specifically, gLong is defined
as the delay from the time when one packet arrives, to the time when
that packet is at the front of the queue, which is used to cover the
latency fluctuation induced by wireless contention and bursty RTC
traffic. We could estimate gLong as the ratio of current queue size
over average dequeuing rate since it’s more affected by the queue
dynamics. Short-term queuing delay is the time from the time one
packet is at the front of the queue, to the time when that packet is
finally dequeued. gShort is more related to the sending pattern at
the link layer (e.g., the aggregation of MAC data units will lead to
fluctuations in qShort). We therefore individually predict gLong and
gShort, and take their sum as the estimation of queuing delay. In Fig-
ure 6, avg(-) denotes the average value over a sliding window, while
cur(-) denotes the current value measured at the time of calculation.
qSize is the size of the queue, gFrontWaitTime is the time that the
current front packet of the queue has waited so far, and txRate is the
dequeuing rate of the queue.

Using the combination of long-term and short-term queuing delay
prediction has two advantages. We illustrate the advantages with an
example in Figure 7. First, using qShort can quickly detect the ABW
drop. When the ABW starts to decrease, since the queue needs some
time to build up, and the measured txRate also needs some time to
decrease due to the sliding window, gLong increase slowly. Instead,
packets have to wait for longer time to send, which could be imme-
diately observed. As illustrated in 5-15ms in Figure 7, gShort would
dominate the increase in total queuing delay, quickly reflecting the
ABW drop. Second, using gLong could provide a stable and accurate
estimate of the queuing delay when the queue has already been built
up. For example, when the ABW while the bottleneck queue is still
overloaded (e.g., after 15ms in Figure 7), gLong would dominate the
queuing delay, providing a stable and accurate estimation.

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

Next, we further introduce how we handle two practical issues
in realizing the estimation of queuing delay.

Adjustments against bursty departure. The bursty departure of
the queue due to the aggregation of packets at the link layer could
affect the accuracy of the estimation of qLong: when there are several
packetsin the queue, they may be sent out together at once. In fact, ac-
cording to our design, fluctuations within a burst should be reflected
on gShort. Thus, when calculating gLong, we estimate gSize as

qSize = max(sizeOfPacketsInQueue —maxBurstSize,0) (1)

where maxBurstSize is the maximum size of simultaneous packet
departures at the resolution of 1ms.

Calculation with queue disciplines. Another issue in practice
is that queues in reality might not be FIFO as assumed in research
papers [31]. For example, the default queue discipline in systemd
has been changed to fq_codel among different flows differentiated
by their 5-tuples [3]. For cellular networks, each flow also has its own
queue isolated from competing flows [31]. In these cases, we need
to calculate the statistics of the RTC flow’s corresponding queue.

4.2 Transmission Delay Prediction

In this paper, we mainly target at the estimation of delays in the WiFi
network. We refer the readers to [31] for the estimation on cellular
networks. Predicting the transmission delay for each packet is chal-
lenging since it is correlated to the underlying wireless drivers and
physical channels. Especially for high-performance wireless devices
(e.g., 802.11ax), critical features (e.g., bit-rate selection and frame
aggregation) are coded in the hardware device and inaccessible from
the access point CPU without significant vendor interaction [15]. For
example, many Netgear routers adopt the Qualcomm Atheros hard-
ware [1], where performance-critical features (frame aggregation,
etc.) are hard-coded and inaccessible. Therefore, it is challenging to
predict the transmission delay of the wireless channel.

According to [31], we summarize the following observations of
the transmission delay. First, similar to all link layer protocols, there
should be only one data unit in transmission in the wireless channel.
For example, an 802.11ac sender might aggregate several packets into
one data unit (aggregated MPDU, or AMPDU). However, multiple
AMPDUs cannot be transmitted simultaneously since their signals
will interfere with each other. Therefore, the wireless driver will
aggregate several packets into one AMPDU, send it out, and wait for
acknowledgment or timeout of that AMPDU. Second, with recent
efforts in the Linux mainline, the queue in the lower layers of the
wireless network stack has been exposed to the queue discipline [33].
In this case, the lower layer queue in the wireless network stack is
only used to aggregate multiple packets into a link layer frame.

Consequently, as shown in Figure 6, the transmission delay tx is
calculated as the average interval between packet departures from
the network layer queue, with a window similar to txRate. The sliding
window should be long enough to cover at least two bursts from the
sender so that packets are continuously measured. Note that since
multiple packets might be aggregated and dequeued simultaneously,
we do not calculate the intervals that are less than one millisecond.

5 Feedback Updater

Zhuge delivers the estimated latency back to the sender in a mes-
sage that is comprehensible to the sender. To avoid modifications at
end hosts, Zhuge abide by the original feedback message format of

Zili Meng et al.

- ® [k ©
Sender [Rea/er Sender Rea/er

(a) Out-of-band feedback. (b) In-band feedback.
Figure 8: Out-of-band feedback protocols do not explicitly carry the
feedback information in the payload while in-band ones do. Blue and
white blocks denote packet headers and payloads.

Protocol CCA Application
3
= Meta Live [29]
< —~
S TCP PCC [24] Windows 365 [42]
% quicpe BRI Twitch [56]
5 Copa [12] Tencent Start [5]
B~ GCC[19] Google Stadia [23]
=
25 RTP[?;]T CP NADA [65] Zoom [47]
= Scream [37] Microsoft Teams [54]

Table 2: We categorize the feedback mechanisms of existing RTC
applications into out-of-band feedback and in-band feedback. Protocols
of some applications are identified by ourselves.

application protocol and CCAs. This section starts by categorizing
feedback mechanisms of popular CCAs for RTC applications (§5.1),
and then introduce our corresponding solutions (§5.2 and §5.3).

5.1 Feedback Mechanism Classification

We investigate popular RTC applications and summarize their feed-
back mechanisms in Table 2. They can be categorized into two types,
in-band and out-of-band. We present their behaviors in Figure 8.3

o In-band feedback. As shown in Figure 8(b), in-band feedback means
that the feedback information is explicitly written in the payload
of a specific type of feedback packets. For example, the Real-Time
Protocol (RTP), together with the Real-Time Control Protocol
(RTCP), follows the in-band feedback. The receiver records the
time of arrival of each data packet and periodically constructs a
feedback packet to carry time intervals back to the sender [35].
Out-of-band feedback. Out-of-band feedback mechanisms do not
explicitly write the information related to rate control in the pay-
load of feedback packets. In contrast, the sender calculates all
network conditions itself upon receiving the feedback packets.
For example, a TCP client will acknowledge each packet it receives.
When the sender receives the ACK packet, it will then calculate
the RTT, receiving rate, and other network conditions.

We separately design solutions for the above two different feed-
back mechanisms. For out-of-band feedback mechanisms, network
conditions are measured at the sender only. Our observation is that
we can deliberately delay the feedback ACK packets to carry the
network conditions back. For in-band feedback mechanisms, as feed-
back information is written in the payload of feedback packets, we
need to update the payload of feedback packets. Next we introduce
two solutions in detail.

5.2 Out-of-band Feedback: Delaying ACKs

ACK packets are used as messages for applications relying on out-of-
band feedback, but are consumed in different ways by various CCAs.
For example, BBR counts the receiving rate and queries the minimal
RTT of ACK packets for rate adaption, while Copa [12] is sensitive to

3Some protocols may utilize both feedback mechanisms. For example, the RTP sender
also measures the RTT itself, similar to TCP [55]. This RTT information is not used
for rate control, but is only used to stabilize the control loop in RTP.

Zhuge

(3") Server detects delay (3) Server detects delay
increases w/ Zhuge _ increases w/o Zhuge =-----. X
“a +Reduced control loop—+ </

Server
\ ad'usV / /
NA J
A del y_é\, ‘,:'\ é\/
= & E*(ZRincreased &
ela

iy <
/(d y fed\t}icy

(1" delay,” (1) delay

prediction (2 interfaces)

NI

Figure 9: Zhuge immediately delays the feedback packets in the reverse
direction to carry the predicted fortunes back.

} Access Point

per-packet delay. To satisfy the requirements of different CCAs, our
design goal is to faithfully deliver the estimated latency in the finest
per-packet granularity by delaying ACK packets. CCAs can then
aggregate fine-grained information and react in their own ways.

We present an illustration of how Zhuge carries the predicted
packet fortunes back from the view of AP in Figure 9. Blue arrows in-
dicate how network conditions can be sensed by the sender without
Zhuge. Assume packets with sequence numbers k and k+1 arrive
at the AP from the server, and now the available bandwidth drops.
Without Zhuge, the packet behind (seq k+1) will be dequeued later
than expected, and the queuing delay will gradually increase ((1) in
blue). The client will then receive these two packets with an enlarged
interval, and consequently acknowledge them with that interval.
The ACK packets will then arrive at and depart from the AP with
an enlarged interval ((2) in blue). As shown in Figure 10, without
Zhuge, the sender can only acknowledge increased RTT when the
ACK of delayed packets arrives at time deltaDelay.

With Zhuge, the latency of packets seq k and k+1 could be pre-
dicted upon their arrival ((1’) in red). If the Fortune Teller predicts
that the delay is increasing, we can immediately delay earlier ACKs
of previous packets that have arrived or will arrive at the access
point. As illustrated by red arrows in Figure 9, we can deliberately
enlarge the interval between other ACK packets (ACK j + 1 and
J+2) to timely notify the sender ((2) in red). In this case, the server
can detect the available bandwidth drops when packets with the
adjusted delay arrive at the server ((3’) in red). The RTTs of different
packets measured by the server with Zhuge would then be shifted
forward as shown in Figure 10. Consequently, the control loop of
CCAs is reduced by (k+1) — (j+1) (counted in ACK number, the
green arrow in Figure 9). Also note that, Zhuge does not need to
look at and match the sequence and ACK number - the numbers
presented here are for illustrative purpose. Instead, Zhuge only looks
at the 5-tuple to identify flows, and views the sequence and ACK
streams as blackboxes. In this way, Zhuge could still work even the
transport protocol is encrypted (e.g., QUIC).

However, downlink data packets and uplink feedback packets
arrive at the AP asynchronously. Thus, it is often impossible to one-
on-one map the delay predicted by the downlink data packets to the
uplink feedback packets. When packets arrive, the Fortune Teller will
be updated according to current network conditions. The updated
queue conditions include the qLong, qShort, and tx, as introduced
in §4. The final predicted total delay is calculated as:

totalDelay = qLong+qShort+tx 2)

Below we introduce design principles of Zhuge to ensure the

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

deltapelay

—o— w/ Zhuge
—o— w/0 Zhuge|

Measured RTT
at the server

Ack Number

k+1 k+2

Figure 10: Zhuge shifts the curve of RTT forward by delaying earlier
returning ACK packet to quickly feedback network conditions. The
actualDelay is the control loop of Zhuge.

g2

precision of latency of packets.

Delivering precise long-term latency in the steady state. Since
Zhuge deliberately delays the feedback packets in the uplink, a nat-
ural concern is whether such a delay will affect the estimation of
network RTT in the steady state. For example, for the packet seq
k+1 in Figure 9, it has already suffered a long queuing delay in the
downlink direction. If Zhuge also introduces a non-trivial delay for
its feedback ACK packet ACK k+2 in the uplink direction, it will exag-
gerate the real RTT and might interfere with the estimation of CCAs.

To handle this problem, we do not directly add the absolute esti-
mated delays from the downlink direction into the additional ACK
delay in the uplink direction. Instead, we record the relative delay
deltas, i.e. the delay difference between consecutive downlink pack-
ets. When the estimated delay is increasing, we could record a series
of positive delay deltas from the downlink direction and gradually
increase the delay in the uplink direction. When the queue has al-
ready been steadily built up (e.g., for packets after seq k+1), the delay
delta would be around zero, and the feedback packet in the uplink
direction would not suffer from additional delays.

Delivering precise short-term latency fluctuation. Short-term
per-packet latency dynamics are vital for latency-sensitive CCAs
like Copa. These CCAs will utilize the patterns of packet delays at the
sub-RTT level to control the sending rate. However, naively leverag-
ing the delay delta mechanism may not faithfully deliver short-term
latency fluctuations. The reason is that short-term latency varies
packet-by-packet. Not every delay delta can be carried in one sep-
arate ACK. This might result in the accumulation of multiple delay
deltas into one ACK, which is unfaithful. For example, when three
data packets arrive at the AP with delay deltas of +1ms between each
packet, directly delaying the next ACK for +3ms would introduce
a sharper delay increase than the actual value.

To address this problem, instead of delivering per-packet delay
delta, our key idea is pursuing the distributional equivalence between
downlink delay delta and uplink ACK delays. We maintain a distri-
bution of recent delay deltas of the downlink data packets. Upon the
arrival of a downlink packet, we calculate the delay delta according
to the predicted delay by the Fortune Teller. When an uplink feed-
back packet arrives at the access point, we sample the distribution of
recent deltas, and use the obtained value to delay the feedback packet.
In this case, even under bursty packet arrival and departure, Zhuge
is able to mimic the delay distributions to the feedback packets.

Preserving the order of feedback packets. Our approach of apply-
ing delay deltas to uplink feedback packets introduces an additional
challenge of order preserving of feedback packets. For example, if
packet ACK j+1 and j + 2 arrive simultaneously, and ACK j +2
samples a lower delay than ACK j+1, the AP may send ACK j+2
in front of ACK j+1, which leads to out-of-order of feedback pack-
ets and confusion at the sender. Clamping the sending time of the

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

Algorithm 1: On data packets: Out-of-band feedback

1 deltaDelay = curTotalDelay - lastTotalDelay
2 if deltaDelay > 0 then
3 L deltaHistory.push_back(deltaDelay)

1 else
5 L tokenHistory.push_back(-deltaDelay)

6 lastTotalDelay = curtotalDelay

Algorithm 2: On ACK packets: Out-of-band feedback

1 actualDelay = min (0, lastSentTime - curArrvTime)
2 actualDelay += random(deltaHistory)
3 while tokenHistory is not empty do

4 if tokenHistory.front > actualDelay then
5 tokenHistory.front -= actualDelay

6 actualDelay = 0

7 break

8 else

9 actualDelay -= tokenHistory.front
10 L tokenHistory.pop_front

11 Schedule to send the current ACK packet after actualDelay
12 lastSendTime = curArrvTime + actualDelay

subsequent packets to the precedent ones, such as holding ACK j+2
until ACK j+1 has been sent, will lead to the overestimation of RTT.

In response, we introduce a delay token to preserve the order of
feedback packets and also avoid the overestimation of RTT. When
we need to let the subsequent feedback packets wait for the sending
of precedent packets, we store the waiting time as a delay token.
Next time when a positive delay delta is sampled, we will first try to
consume the token. In this case, the average values of actual delays
will be maintained the same as the predicted delays.

We finally present the workflow of how Zhuge Feedback Updater
uses the predicted fortune to update the feedback packets. As shown
in Algorithm 1, upon arrival of each data packet, given the pred-
icated delay of that packet, Zhuge first calculates the delay delta
(line 1). If the delta is nonnegative, we store it into a sliding win-
dow. Since Zhuge can only delay the ACK packets with a positive
time, if the delta is negative, we need to store it as tokens (line 4-
5). Asynchronously, upon arrival of each ACK packet, Algorithm 2
will be executed to properly delay ACKs. curArrvTime is the arrival
timestamp of the current ACK, and lastSentTime is the calculated
timestamp to send the last ACK packet from the AP to the server. For
order preservation, Zhuge first calculates the minimum delay for the
current ACK packet to make sure that the current ACK packet would
be sent after previous ACK packets (line 1). Zhuge then randomly
samples a delay delta from the recent deltas in a sliding window
(line 2). Zhuge further checks if there are outstanding tokens and
consumes the tokens if available (line 3-10). Finally, the current ACK
packet will be delayed and sent after actualDelay (line 11).

5.3 In-bandFeedback: Updating Payloads

For in-band feedback mechanisms such as RTCP [55], the feedback
information (e.g. per-packet receiving time) is written in the pay-
load of feedback packets. We need to update their payloads to carry
the freshly estimated latency back to the sender. We use the RTP
(data)/RTCP (feedback) protocol pair to introduce how we update

Zili Meng et al.

the feedback packets with two steps.

o Step 1: Packet fortune recording. Upon the arrival of each RTP
packet, Zhuge will predict its fortune and then store the predicted
delay together with its RTP transport-wide congestion control
(TWCC) sequence number in the RTP header.

o Step 2: Feedback construction. When it’s the time to feedback the
current network conditions back to the sender (e.g., once per RTT
or per frame [35]), Zhuge will behave like the RTP receiver and
construct a TWCC feedback packet based on stored delays and
sequence numbers. To ensure timestamp consistency, Zhuge will
only send the TWCC packets constructed by itself and drop all
TWCC from the client. For other types of feedback packets (e.g.,
negative acknowledgement for loss recovery, receiver reports,
etc.), Zhuge will forward it from the client to server as normal.
Detailed RTP/RTCP packet formats are presented in RFCs [35, 55].

Meanwhile, there are two practical concerns regarding the imple-

mentation of Zhuge in-band feedback mechanism.

Time synchronization. Since the timestamps on the AP may not be
synchronized with the receiver, a straightforward concern is whether
the time differences between the AP and the receiver would affect the
estimation of CCAs. In fact, the server is designed to tol